Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92259
標題: Evaluation of the vaccine potential of the Staphylococcus aureus specific monoclonal antibody 1D11B and its target antigen
金黃葡萄球菌專一單株抗體 1D11B 及其目標抗原之疫苗潛力評估
作者: 林偉名
Wei-Ming Lin
關鍵字: 金黃葡萄球菌
治療性抗體
疫苗
Staphylococcus aureus
therapeutic antibody
vaccine
引用: 洪敬晟 (2012) 金黃葡萄球菌 ATCC8095 之特性描述。國立中興大學分子生物學研究所,碩士論文。 Akerstrom, B., Brodin, T., Reis, K., and Bjorck, L. (1985). Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J Immunol, 135(4), 2589-2592. Anderson, A.S., Scully, I.L., Timofeyeva, Y., Murphy, E., McNeil, L.K., Mininni, T., Nunez, L., Carriere, M., Singer, C., Dilts, D.A., et al. (2012). Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J Infect Dis, 205(11), 1688-1696. Arrecubieta, C., Matsunaga, I., Asai, T., Naka, Y., Deng, M.C., and Lowy, F.D. (2008). Vaccination with clumping factor A and fibronectin binding protein A to prevent Staphylococcus aureus infection of an aortic patch in mice. J Infect Dis, 198(4), 571-575. Bagnoli, F., Bertholet, S., and Grandi, G. (2012). Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol, 2, 16. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu Rev Immunol, 18, 767-811. Baudner, B.C., Ronconi, V., Casini, D., Tortoli, M., Kazzaz, J., Singh, M., Hawkins, L.D., Wack, A., and O'Hagan, D.T. (2009). MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm Res, 26(6), 1477-1485. Bjork, I., Petersson, B.A., and Sjoquist, J. (1972). Some physiochemical properties of protein A from Staphylococcus aureus. Eur J Biochem, 29(3), 579-584. Brady, R.A., Leid, J.G., Camper, A.K., Costerton, J.W., and Shirtliff, M.E. (2006). Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun, 74(6), 3415-3426. Buckwalter, M.R., and Albert, M.L. (2009). Orchestration of the immune response by dendritic cells. Curr Biol, 19(9), R355-361. Chu, C.L., Yu, Y.L., Kung, Y.C., Liao, P.Y., Liu, K.J., Tseng, Y.T., Lin, Y.C., Hsieh, S.S., Chong, P.C., and Yang, C.Y. (2012). The immunomodulatory activity of meningococcal lipoprotein Ag473 depends on the conformation made up of the lipid and protein moieties. PLoS One, 7(7), e40873. Cook, J., Hepler, R., Pancari, G., Kuklin, N., Fan, H., Wang, X.M., Cope, L., Tan, C., Joyce, J., Onishi, J., et al. (2009). Staphylococcus aureus capsule type 8 antibodies provide inconsistent efficacy in murine models of staphylococcal infection. Hum Vaccin, 5(4), 254-263. Deurenberg, R.H., and Stobberingh, E.E. (2008). The evolution of Staphylococcus aureus. Infect Genet Evol, 8(6), 747-763. Donlan, R.M., and Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 15(2), 167-193. Dormitzer, P.R., Galli, G., Castellino, F., Golding, H., Khurana, S., Del Giudice, G., and Rappuoli, R. (2011). Influenza vaccine immunology. Immunol Rev, 239(1), 167-177. Esposito, D., and Chatterjee, D.K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol, 17(4), 353-358. Fattom, A., Fuller, S., Propst, M., Winston, S., Muenz, L., He, D., Naso, R., and Horwith, G. (2004). Safety and immunogenicity of a booster dose of Staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine, 23(5), 656-663. Foletti, D., Strop, P., Shaughnessy, L., Hasa-Moreno, A., Casas, M.G., Russell, M., Bee, C., Wu, S., Pham, A., Zeng, Z., et al. (2013). Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus alpha-hemolysin. J Mol Biol, 425(10), 1641-1654. Foster, T.J. (2005). Immune evasion by staphylococci. Nat Rev Microbiol, 3(12), 948-958. Foster, T.J., and Hook, M. (1998). Surface protein adhesins of Staphylococcus aureus. Trends Microbiol, 6(12), 484-488. Fujikawa, K., Kawakami, A., and Eguchi, K. (2007). [Etanercept: recombinant human soluble tumor necrosis factor receptor fusion protein]. Nihon Rinsho, 65(7), 1211-1217. Ganapamo, F., Dennis, V.A., and Philipp, M.T. (2003). Differential acquired immune responsiveness to bacterial lipoproteins in Lyme disease-resistant and -susceptible mouse strains. Eur J Immunol, 33(7), 1934-1940. Gordon, R.J., and Lowy, F.D. (2008). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 46 Suppl 5, S350-359. Horsburgh, M.J., Wharton, S.J., Cox, A.G., Ingham, E., Peacock, S., and Foster, S.J. (2002). MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol, 44(5), 1269-1286. Hsu, C.A., Lin, W.R., Li, J.C., Liu, Y.L., Tseng, Y.T., Chang, C.M., Lee, Y.S., and Yang, C.Y. (2008). Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. Proteomics, 8(10), 2115-2125. Hultgren, O., Eugster, H.P., Sedgwick, J.D., Korner, H., and Tarkowski, A. (1998). TNF/lymphotoxin-alpha double-mutant mice resist septic arthritis but display increased mortality in response to Staphylococcus aureus. J Immunol, 161(11), 5937-5942. Ishigame, H., Kakuta, S., Nagai, T., Kadoki, M., Nambu, A., Komiyama, Y., Fujikado, N., Tanahashi, Y., Akitsu, A., Kotaki, H., et al. (2009). Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity, 30(1), 108-119. Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe, 3(6), 352-363. Joffre, O., Nolte, M.A., Sporri, R., and Reis e Sousa, C. (2009). Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev, 227(1), 234-247. Kahl, B., Herrmann, M., Everding, A.S., Koch, H.G., Becker, K., Harms, E., Proctor, R.A., and Peters, G. (1998). Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis, 177(4), 1023-1029. Kamath, A.T., Rochat, A.F., Valenti, M.P., Agger, E.M., Lingnau, K., Andersen, P., Lambert, P.H., and Siegrist, C.A. (2008). Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant. PLoS One, 3(11), e3683. Karavolos, M.H., Horsburgh, M.J., Ingham, E., and Foster, S.J. (2003). Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology, 149(Pt 10), 2749-2758. Kim, H.K., DeDent, A., Cheng, A.G., McAdow, M., Bagnoli, F., Missiakas, D.M., and Schneewind, O. (2010). IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine, 28(38), 6382-6392. Kim, H.K., Kim, H.Y., Schneewind, O., and Missiakas, D. (2011). Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. Faseb j, 25(10), 3605-3612. Kim, H.K., Thammavongsa, V., Schneewind, O., and Missiakas, D. (2012). Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol, 15(1), 92-99. Kimmel, S.R. (2005). Prevention of meningococcal disease. Am Fam Physician, 72(10), 2049-2056. Kluytmans, J., van Belkum, A., and Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev, 10(3), 505-520. Kuklin, N.A., Clark, D.J., Secore, S., Cook, J., Cope, L.D., McNeely, T., Noble, L., Brown, M.J., Zorman, J.K., Wang, X.M., et al. (2006). A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun, 74(4), 2215-2223. Lin, L., Ibrahim, A.S., Xu, X., Farber, J.M., Avanesian, V., Baquir, B., Fu, Y., French, S.W., Edwards, J.E., Jr., and Spellberg, B. (2009). Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog, 5(12), e1000703. Lopez-Bravo, M., and Ardavin, C. (2008). In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity, 29(3), 343-351. Lowy, F.D. (1998). Staphylococcus aureus infections. N Engl J Med, 339(8), 520-532. Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449(7164), 819-826. Mellman, I., and Steinman, R.M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell, 106(3), 255-258. Menzies, B.E. (2003). The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis, 16(3), 225-229. Montgomery, C.P., Boyle-Vavra, S., Adem, P.V., Lee, J.C., Husain, A.N., Clasen, J., and Daum, R.S. (2008). Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis, 198(4), 561-570. Narita, K., Hu, D.L., Mori, F., Wakabayashi, K., Iwakura, Y., and Nakane, A. (2010). Role of interleukin-17A in cell-mediated protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of clumping factor A. Infect Immun, 78(10), 4234-4242. Ohlsen, K., and Lorenz, U. (2010). Immunotherapeutic strategies to combat staphylococcal infections. Int J Med Microbiol, 300(6), 402-410. Otto, M. (2010). Novel targeted immunotherapy approaches for staphylococcal infection. Expert Opin Biol Ther, 10(7), 1049-1059. Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., and Aderem, A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A, 97(25), 13766-13771. Palucka, K., Banchereau, J., and Mellman, I. (2010). Designing vaccines based on biology of human dendritic cell subsets. Immunity, 33(4), 464-478. Panatto, D., Amicizia, D., Lai, P.L., and Gasparini, R. (2011). Neisseria meningitidis B vaccines. Expert Rev Vaccines, 10(9), 1337-1351. Patti, J.M., Allen, B.L., McGavin, M.J., and Hook, M. (1994). MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol, 48, 585-617. Prevost, G., Couppie, P., and Monteil, H. (2003). Staphylococcal epidermolysins. Curr Opin Infect Dis, 16(2), 71-76. Proctor, R.A., and Peters, G. (1998). Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis, 27(3), 419-422. Proctor, R.A., van Langevelde, P., Kristjansson, M., Maslow, J.N., and Arbeit, R.D. (1995). Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis, 20(1), 95-102. Ragle, B.E., and Bubeck Wardenburg, J. (2009). Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun, 77(7), 2712-2718. Reis e Sousa, C. (2006). Dendritic cells in a mature age. Nat Rev Immunol, 6(6), 476-483. Rivas, J.M., Speziale, P., Patti, J.M., and Hook, M. (2004). MSCRAMM--targeted vaccines and immunotherapy for staphylococcal infection. Curr Opin Drug Discov Devel, 7(2), 223-227. Rooijakkers, S.H., van Kessel, K.P., and van Strijp, J.A. (2005). Staphylococcal innate immune evasion. Trends Microbiol, 13(12), 596-601. Schaffer, A.C., and Lee, J.C. (2008). Vaccination and passive immunisation against Staphylococcus aureus. Int J Antimicrob Agents, 32 Suppl 1, S71-78. Serruto, D., Rappuoli, R., Scarselli, M., Gros, P., and van Strijp, J.A. (2010a). Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nat Rev Microbiol, 8(6), 393-399. Serruto, D., Spadafina, T., Ciucchi, L., Lewis, L.A., Ram, S., Tontini, M., Santini, L., Biolchi, A., Seib, K.L., Giuliani, M.M., et al. (2010b). Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc Natl Acad Sci U S A, 107(8), 3770-3775. Sjodahl, J. (1977). Repetitive sequences in protein A from Staphylococcus aureus. Arrangement of five regions within the protein, four being highly homologous and Fc-binding. Eur J Biochem, 73(2), 343-351. Spellberg, B., and Daum, R. (2012). Development of a vaccine against Staphylococcus aureus. Semin Immunopathol, 34(2), 335-348. Spellberg, B., Ibrahim, A.S., Yeaman, M.R., Lin, L., Fu, Y., Avanesian, V., Bayer, A.S., Filler, S.G., Lipke, P., Otoo, H., et al. (2008). The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun, 76(10), 4574-4580. Stranger-Jones, Y.K., Bae, T., and Schneewind, O. (2006). Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A, 103(45), 16942-16947. Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820. Tuchscherr, L.P., Buzzola, F.R., Alvarez, L.P., Lee, J.C., and Sordelli, D.O. (2008). Antibodies to capsular polysaccharide and clumping factor A prevent mastitis and the emergence of unencapsulated and small-colony variants of Staphylococcus aureus in mice. Infect Immun, 76(12), 5738-5744. Tzianabos, A.O., Wang, J.Y., and Lee, J.C. (2001). Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci U S A, 98(16), 9365-9370. von Eiff, C., Becker, K., Machka, K., Stammer, H., and Peters, G. (2001). Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med, 344(1), 11-16. Vytvytska, O., Nagy, E., Bluggel, M., Meyer, H.E., Kurzbauer, R., Huber, L.A., and Klade, C.S. (2002). Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics, 2(5), 580-590. Wertheim, H.F., Melles, D.C., Vos, M.C., van Leeuwen, W., van Belkum, A., Verbrugh, H.A., and Nouwen, J.L. (2005a). The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis, 5(12), 751-762. Wertheim, H.F.L., Melles, D.C., Vos, M.C., van Leeuwen, W., van Belkum, A., Verbrugh, H.A., and Nouwen, J.L. (2005b). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751-762. Yu, H., Buff, S.M., Baatz, J.E., and Virella-Lowell, I. (2008). Oral instillation with surfactant phospholipid: a reliable alternative to intratracheal injection in mouse studies. Lab Anim, 42(3), 294-304. Zhang, H., Niesel, D.W., Peterson, J.W., and Klimpel, G.R. (1998). Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect Immun, 66(11), 5196-5201. Zhao, H.L., Yao, X.Q., Xue, C., Wang, Y., Xiong, X.H., and Liu, Z.M. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expr Purif, 61(1), 73-77.
摘要: Staphylococcus aureus (SA) causes a variety of diseases ranging from skin infection to life-threatening diseases. Most isolated clinical SA strains show antibiotic resistance; thus developing effective protection strategies against SA infection are urgently needed. Monoclonal antibody (mAb) 1D11B that was raised against heat killed SA presumably recognizes a surface-exposed epitope. This study investigated the therapeutic potential of the mAb 1D11B and identified its target antigen. To achieve the first goal, 0.4 mg / 200 μl purified mAb were intraperitoneally injected into each mouse 16 h before challenge with SA Tc1040, a clinical isolate, by intraperitoneal injection or intratracheal instillation. No protection was observed in mice challenged by intraperitoneal injection assessed by either the survival rate or blood bacterial counts. However, SA recovered from the lungs of mAb 1D11B administered mice were significantly less than mice received a nonspecific mAb 2F3B. These results indicate that mAb 1D11B may protect the mice against the Staphylococcus aureus induced pneumonia and its target antigen may be a good vaccine candidate. The target antigen of 1D11B was previously identified by mass spectrometry to be the lipoprotein MntC (manganese transporter protein C). In this study, the lipidated Ag473-MntC fusion protein (L-Ag473-MntC) and the lipidated MntC (L-MntC) were produced and used to immunize BALB/c mice in the absence of adjuvants. Anti-MntC antibodies were detected in all immunized mice and anti-Ag473 antibodies were also detected in the (L-Ag473-MntC) immunized mice. In contrast to the protection assays conducted in CD-1 mice by the other group, immunization with L-MntC or L-Ag473-MntC did not confer protection against SA infection. Whether the different results are resulted from the mouse strain or immunogen preparation remains to be determind.
Staphylococcus aureus (SA) 為人類伺機性病原菌,可廣泛造成人類多種疾病的發生,包含致命性的疾病如肺炎、骨髓炎、心內膜炎及敗血症等,由於抗生素的過度使用導致 SA 多重抗藥性菌株的出現,因此迫切需要發展 SA 的疫苗。本實驗室以 SA 全菌免疫小鼠進行融合瘤細胞製備,經篩選獲得 SA 專一單株抗體 1D11B,推測其 epitope 應該位於菌體表面,本論文評估單株抗體 1D11B 是否具有治療性抗體潛力及確認其抗原蛋白質身分。抗體保護力評估以 0.4 mg / 200 μl 純化後單株抗體腹腔注射小鼠,16 小時後以腹腔注射或氣管滴灌感染 SA 臨床菌株 Tc1040 進行攻毒試驗。腹腔注射攻毒在存活率觀察及血液菌落數分析皆顯示無保護力,然而氣管滴灌攻毒顯示注射單株抗體 1D11B 的小鼠肺臟菌落數比注射非專一單株抗體 2F3B 有顯著減少。以上結果指出單株抗體 1D11B 可保護小鼠抵抗 SA 引發的肺炎,而 1D11B 的目標抗原可能為良好的疫苗候選抗原。本實驗室由質譜儀分析確認單株抗體 1D11B 之目標抗原為脂蛋白質 MntC (manganese transport protein C),本論文純化 lipidated Ag473-MntC (L-Ag473-MntC) 融合蛋白質與 L-MntC 重組蛋白質,不加佐劑免疫 BALB/c 小鼠。免疫後所有小鼠皆偵測到 anti-MntC 抗體產生,且免疫 L-Ag473-MntC 的小鼠也偵測到含有 anti-Ag473 抗體,但是在 SA 的攻毒試驗中顯示無保護力。有研究團隊指出免疫 MntC 在 CD-1 小鼠可產生保護性免疫反應,本論文之實驗結果是否由於不同的小鼠品系或免疫原製備方法所造成,仍需進行實驗確認。
URI: http://hdl.handle.net/11455/92259
文章公開時間: 2017-08-31
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.