Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92262
標題: Characterization of the Acinetobacter baumannii glycoprotein A1S_3744 and effects of the immune protein P64KN on the immunogenicity of the identified protective antigens
鮑氏不動桿菌醣蛋白質 A1S_3744 特性分析以及免疫載體蛋白質 P64KN 對保護性抗原致免疫力的影響
作者: 楊宗翰
Zong-Han Yang
關鍵字: 鮑氏不動桿菌
醣蛋白質
融合蛋白質
Acinetobacter baumannii
glycoprotein
fusion protein
引用: 1. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538-582. 2. Howard A, O'Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3: 243-250. 3. Dell A, Galadari A, Sastre F, Hitchen P (2010) Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010: 148178. 4. Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, et al. (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8: e1002758. 5. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8: 765-778. 6. Messner P (2004) Prokaryotic Glycoproteins: Unexplored but Important. J Bacteriol 186: 2517-2519. 7. Gubish ETJ, Chen KCS, Buchanan TM (1982) Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect Immun 37: 189-194. 8. Castric P (1995) pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141: 1247-1254. 9. Stimson E, Virgi M, Makepeace K, Dell A (1995) Meningococcal pilin a glycoprotein substituted with digalactosyl 2, 4-diacetamido-2, 4, 6-trideoxyhexose. Mol Microbiol 17: 1201-1214. 10. Brimer CD, Montie TC (1998) Cloning and Comparison of fliC Genes and Identification of Glycosylation in the Flagellin ofPseudomonas aeruginosa a-Type Strains. J Bacteriol 180: 3209-3217. 11. Paul G, Wieland F (1987) Sequence of the Halobacterial Glycosaminoglyca. J Biol Chem 262: 9587-9593. 12. Mescher MF, Strominger JL (1975) Bacitracin Induces Sphere Formation in Halobacterium Species which Lack a Wall Peptidoglycan. J Gen Microbiol 89: 375-378. 13. Lechner J, Wieland F (1989) Structure and Biosynthesis of Prokaryotic Glycoproteins. Annu Rev Biochem 58: 173-194. 14. Beeley JG (1977) Peptide chain conformation and the glycosylation of glycoproteins. Biochem Biophys Res Commun 76: 1051-1055. 15. Young NM, Brisson JR, Kelly J, Watson DC, Tessier L, et al. (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277: 42530-42539. 16. Michael Wacker, Dennis Linton, Paul G.Hitchen, Mihai Nita-Lazar, Stuart M.Haslam, et al. (2002) N-Linked Glycosylation in Campylobacter jejuni and Its Functional Transfer into E. coli. Science 298: 1790-1793. 17. Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155: 317-327. 18. McKenzie SJ, Halsey JF (1984) Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol 133: 1818-1824. 19. Bensing BA, Gibson BW, Sullam PM (2004) The Streptococcus gordonii Platelet Binding Protein GspB Undergoes Glycosylation Independently of Export. J Bacteriol 186: 638-645. 20. Shivshankar P, Sanchez C, Rose LF, Orihuela CJ (2009) The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 73: 663-679. 21. van Sorge NM, Quach D, Gurney MA, Sullam PM, Nizet V, et al. (2009) The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier. J Infect Dis 199: 1479-1487. 22. Power PM, Seib KL, Jennings MP (2006) Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem Biophys Res Commun 347: 904-908. 23. Smedley JG, 3rd, Jewell E, Roguskie J, Horzempa J, Syboldt A, et al. (2005) Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect Immun 73: 7922-7931. 24. Qutyan M, Paliotti M, Castric P (2007) PilO of Pseudomonas aeruginosa 1244: subcellular location and domain assignment. Mol Microbiol 66: 1444-1458. 25. Vik A, Aas FE, Anonsen JH, Bilsborough S, Schneider A, et al. (2009) Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 106: 4447-4452. 26. Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307: 1778-1781. 27. Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, et al. (2013) A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol 89: 816-830. 28. Hug I, Feldman MF (2011) Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 21: 138-151. 29. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60: 523-533. 30. Yuste R (2005) Fluorescence microscopy today. Nat Methods 2: 902-904. 31. Stefan RS (2009) Fusion proteins as biopharmaceuticals – Applications and challenges. Curr Opin Drug Discov Devel 12: 284-295. 32. Kim BJ, Zhou J, Martin B, Carlson OD, Maudsley S, et al. (2010) Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J Pharmacol Exp Ther 334: 682-692. 33. Jennifer A. D, Susan C. L, Robert T. P, B. AJ (2006) Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs 20: 151-160. 34. Schellenberger V, Wang CW, Geething NC, Spink BJ, Campbell A, et al. (2009) A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol 27: 1186-1190. 35. Robert JK (2006) Immunotoxins for targeted cancer therapy. AAPS 8: E532–E551. 36. G. Manoukian, Hagemeister F (2009) Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther 9: 1445–1451. 37. William MP (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18: 157-167. 38. Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24: 1977-1992. 39. Widera A, Norouziyan F, Shen WC (2003) Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 55: 1439-1466. 40. Bai Y, Shen WC (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res 23: 2116-2121. 41. Bai Y, Ann DK, Shen WC (2005) Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci U S A 102: 7292-7296. 42. Amet N, Lee HF, Shen WC (2009) Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharm Res 26: 523-528. 43. Zhao HL, Yao XQ, Xue C, Wang Y, Xiong XH, et al. (2008) Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expr Purif 61: 73-77. 44. Rajesh SG, Chaitan K (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4: 22-27. 45. Ikebe M, Kambara T, Stafford WF, Sata M, Katayama E, et al. (1998) A hinge at the central helix of the regulatory light chain of myosin is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. J Biol Chem 273: 17702-17707. 46. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211: 943-958. 47. George RA, Heringa J (2002) An analysis of protein domain linkers their classification and role in protein folding. Protein Eng Des Sel 15: 871-879. 48. Aurora R, Creamer TP, Srinivasan R, Rose GD (1997) Local Interactions in Protein Folding Lessons from the α-Helix. J Biol Chem 272: 1413-1416. 49. Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297: 249-260. 50. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65: 1357-1369. 51. Yumi Maeda, Hiroshi Ueda, Jun Kazami, Genji Kawano, Eiji Suzuki, et al. (1997) Engineering of Functional Chimeric Protein G-VargulaLuciferase. Anal Biochem 249: 147-152. 52. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12: 345-364. 53. Chen X, Bai Y, Zaro JL, Shen WC (2010) Design of an in vivo cleavable disulfide linker in recombinant fusion proteins. Biotechniques 49: 513-518. 54. Amet N, Wang W, Shen WC (2010) Human growth hormone-transferrin fusion protein for oral delivery in hypophysectomized rats. J Control Release 141: 177-182. 55. Pace D, Pollard AJ, Messonier NE (2009) Quadrivalent meningococcal conjugate vaccines. Vaccine 27: B30-41. 56. González S, Alvarez A, Caballero E, Viña L, Guillén G, et al. (2000) P64k Meningococcal Protein as Immunological Carrier for Weak immunogens. Scand J Immunol 52: 113-116. 57. Perham RN (1991) Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30: 8501-8512. 58. de Kok A, Hengeveld AF, Martin A, Westphal AH (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochimica et Biophysica Acta 1385: 353-366. 59. Perham RN (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69: 961-1004. 60. Bringas R, Fernandez J (1995) A lipoamide dehydrogenase from Neisseria meningitidis has a lipoyl domain. Proteins 21: 303-306. 61. Gonzalez S, Nazabal C, Rao KV, Reyes O, Garay HE, et al. (2004) Cell mediated immune response elicited in mice after immunization with the P64k meningococcal protein: epitope mapping. FEMS Immunol Med Microbiol 42: 233-239. 62. Sonia Gonzalez, Lisel Vina, Consuelo Naza!bal, Glay Chinea, Evelin Caballero, et al. (2000) B-cell epitope mapping of the Neisseria meningitidis P64k protein using overlapping peptides. Biotechnol Appl Biochem 32: 1-8. 63. Guillén G, Alvarez A, Silva R, Morera V, González S, et al. (1998) Expression in Escherichia coli of the lpdA gene, protein sequence analysis and immunological characterization of the P64k protein from Neisseria meningitidis. Biotechnol Appl Biochem 27: 189-196. 64. Pérez A, Dickinson F, Cinza Z, Ruíz A, Serrano T, et al. (2001) Safety and preliminary immunogenicity of the recombinant outer membrane protein P64k of Neisseria meningitidis in human volunteers. Biotechnol Appl Biochem 34: 121-125. 65. Rodrı́guez PC, Rodrı́guez G, G. G, Lage A (2010) Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC review 12: 17-23. 66. Hermida L, Bernardo L, Martin J, Alvarez M, Prado I, et al. (2006) A recombinant fusion protein containing the domain III of the dengue-2 envelope protein is immunogenic and protective in nonhuman primates. Vaccine 24: 3165-3171. 67. 花國勳 (2011) Epitope mapping of meningococcal GroEL, Ag5407 and P64K proteins. 國立中興大學分子生物學研究所 碩士論文. 68. 蕭百智 (2013) Epitope characterization of monoclonal antibody 107-01. 中興大學分子生物學研究所 碩士論文. 69. 林祺叡 (2013) Characterization of the target antigen of mAb 54-07 and evaluation of a multivalent vaccine against the meningococcal infection. 中興大學分子生物學研究所 碩士論文. 70. Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, et al. (2005) Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 7: 1127-1138. 71. 莊斯凱 (2015) Characterization of the Acinetobacter baumannii antigens Ncsp and TonB-R. 中興大學分子生物學研究所 碩士論文. 72. Garfin DE (2003) Gel electrophoresis of proteins. Essential Cell Biology. Vol. 1. 2003. Chapter 7: 197-268 73. 潘健群 (2014) Immunogenicity studies of the conserved antigens NcsP and Mp16 of Moraxella catarrhalis. 中興大學分子生物學研究所 碩士論文. 74. Gaddy JA, Tomaras AP, Actis LA (2009) The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77: 3150-3160. 75. Kim SW, Choi CH, Moon DC, Jin JS, Lee JH, et al. (2009) Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett 301: 224-231. 76. Choi CH, Lee JS, Lee YC, Park TI, Lee JC (2008) Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8: 216. 77. Lazo L, Zulueta A, Hermida L, Blanco A, Sanchez J, et al. (2009) Dengue-4 envelope domain III fused twice within the meningococcal P64k protein carrier induces partial protection in mice. Biotechnol Appl Biochem 52: 265-271.
摘要: Acinetobacter baumannii is a Gram-negative, opportunistic nosocomial pathogen that infects immunocompromised or burn patient and causes infections. Because of its high mortality and multiple antibiotic resistances, A. baumannii has been taken as extremely dangerous pathogens. Base on the fact that the effects of antibiotic have been limited, one of the alternative strategies to take place the antibiotics is to develop effective vaccines. Glycoproteins play an important role in providing physiological function of A. baumannii. At the same time, we found that glycoprotein A1S_3744 got a signal peptide amino acid sequence of lipobox motif that may allow it to set in the membranes. Because A1S_3744 may express on the surface of A. baumannii, which fits the important characteristic of being an effective antigen, we focus on this protein for testing its potential to be a vaccine candidate in this study. First, mice were immunized with purified recombinant protein A1S_3744 (rLS3744) and non-leader sequence A1S_3744 (rNL3744) for producing of the antiserum. By Western blot analysis, we found that A1S_3744 were detected in 100 % of the tested AB isolates suggested that this antigen is highly conserved in AB. To figure out the location of this protein, whole cell ELISA was used in this study. The result showed two possibilities, this protein may not express on the surface of AB or the antiserum of rA1S_3744 is not an effective antiserum. Immunostaining and cell fractionation were used to detect the actual protein location. Results suggested that this protein mainly expressed at the inner membrane of AB, just few of them were found at the outer membrane. Biotinylation were used to labeling the whole surface proteins of AB, we can indirectly proved that there were just a few of A1S_3744 express on the surface. We also tested the bactericidal actives of the antiserum, and it showed no effect on AB. The above results demonstrated that A1S_3744 may not be an effective antigen because of the low surface expression and non-effect on inhibit AB activity. The other subject of this study is to construct the fusion protein between immune-carrier P64KN and the other protective antigen Ncsp, Pase1 and Pase2 with restriction enzyme EcoRI splicing sequence trying to enhance the immunogenicity of these three antigens. For testing the different of immunogenicity between fusion protein and their target antigens, Western blot analysis and antiserum titration test were used in the study. Results show that only P64KN-Ncsp antiserum can recognize rNcsp and showed the same antiserum efficiency of Ncsp antiserum. During the bactericidal assay, we found that the antiserum of P64KN-Ncsp lost its ability to inhibit the activity of AB. The above results demonstrate that those fusion proteins may lost their original structure and change their epitopes cause of the ineffective linker design. Using the linkers that can truly separate each parts of the fusion protein might be a better way to construct P64KN related fusion proteins.
鮑氏不動桿菌 (Acinetobacter baumannii, AB)是一種革蘭氏陰性菌,環境中廣泛存在,是人類體表上常見的菌種之一。 AB 菌感染患者會產生肺炎、腦膜炎、心內膜炎等症狀甚至死亡。AB菌具有多重抗藥性,導致治療困難,也造成病患的高死亡率,因此,尋找能誘導出具殺菌性抗體的保守性抗原以發展有效的疫苗為一對應策略。本研究以 AB 菌之醣蛋白質 A1S_3744 為目標,利用其重組蛋白質的抗血清分析 A1S_3744 在 AB 菌族群中表現情形,發現此蛋白質在各 AB 菌株間皆有表現。為分析 A1S_3744 在 AB 菌體表現位置,本實驗利用抗血清進行 whole cell ELISA、免疫螢光染色法以及細胞分層試驗,結果顯示 AB 菌外膜有 A1S_3744 表現但無法被重組蛋白質的抗血清辨識。進一步利用 biotin 標記AB菌表面蛋白質並將結果與 A1S_3744 抗血清辨認結果進行比對,證實 A1S_3744 在 AB 菌表面表現甚少。此外,將A1S_3744 抗血清進行殺菌力分析,結果顯示其血清缺乏殺菌或是抑菌能力。綜合以上結果得知A1S_3744 蛋白質在 AB 菌中的表現以在內膜及外膜都有,但是僅有其中極小部份表現在細胞表面。然而,以 E. coli 表現重組 A1S_3744 所產生之抗血清卻具無法有效辨識本身經修飾化的醣蛋白質的可能性,因此為了取得更加準確的結果,直接利用 AB 菌本身抗原直接進行實驗會更加理想。 本研究另一主題是利用實驗室前人研究中具有引發強烈免疫反應、可做為免疫載體的 P64K N 端 146 個胺基酸序列的蛋白質 P64KN1-146 (P64KN) 與實驗室中發現具有保護力的三種抗原 Ncsp、Pase1 及 Pas2 一同構築融合蛋白質以提高此三種蛋白質之免疫性為實驗目的。這三個目標抗原在弗氏佐劑的輔助下能夠誘發小鼠產生對抗 AB 菌能力的免疫反應。然而引發的免疫反應不夠強烈再加上弗氏佐劑帶有毒性,因此將 P64KN 與目標抗原結合並觀察是否可以取代弗氏佐劑以協助三種抗原提高免疫性為本研究第二個目標。將三種融合蛋白質抗血清利用西方墨點法及抗血清結合效力分析,結果顯示除了 P64KN-Ncsp 抗血清,其餘融合蛋白質血清皆無法辨識其對應之抗原。進一步針對 anti-P64KN-Ncsp 進行殺菌力分析,結果顯示此抗血清完全失去原本 anti-Ncsp 所具有的抑菌能力。綜合以上結果顯示,本研究所設計之融合蛋白質可能因為融合蛋白質內構型相互影響導致抗原辨識位改變,進一步造成產生之抗血清皆失去其辨識目標抗原或是抑制 AB 菌生長的能力。
URI: http://hdl.handle.net/11455/92262
文章公開時間: 2018-08-26
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.