Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92283
標題: 柑橘皮萃取物於免疫調節功效之 生物活性探討
Exploring the bioactivity of extract from multiple citrus peels on immunomodulatory effects
作者: 林羿瑾
Yi-Chin Lin
關鍵字: 橘子水
樹突細胞
免疫調節
T 細胞
Gold lotion
dendritic cells
immunomodulatory
T cells
引用: 1. Medzhitov R, Janeway CA Jr. Innate immunity:impact on the adaptive immune response. Curr Opin Immunol. 1997;9:4–9. 2. Garcia KC, Teyton L, Wilson IA. Structural basis of T cell recognition. Annu Rev Immunol. 1999;17:369–97. 3. Wei Li, Ya Nan Sun, Xi Tao Yan, Seo Young Yang, Sohyun Kim, Young Mi Lee, Young-Sang Koh, Young Ho Kim. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. 2014;37 (2): 186–192. 4. C. J. Howard, B. Charleston, S. A. Stephens, P. Sopp and J. C. Hope. The role of dendritic cells in shaping the immune response. Animal Health Research Reviews. 2004;5 (2):191–195. 5. Maria Rescigno, Claudia Winzler, Domenico DeIia7 Carmela Mutini,t Manfred Lutz and Paola Ricciardi-Castagnoli. Dendritic cell maturation is required for initiation of the immune response. Journal of Leukocyte Biology. 1997;61. 6. Bell D, Young JW, Banchereau J. Dendritic cells. Adv Immunol. 1999;72:255–324. 7. Moretta A, Biassoni R, Bottino C, et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol Rev. 1997;155:105–17. 8. Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol. 1998;16:201–23. 9. Li S, Pan MH, Lo CY, Tan D, Wang Y, Shahidi F, Ho CT: Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. J. Functional Foods. 2009;1:2–12. 10. Adele M Lehane1, Kevin J Saliba. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Research Notes. 2008;1:26. 11. Chutia M, Deka Bhuyan P, Pathak MG, Sarma TC, Boruah P. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Sci Technol. 2009;42:777–780. 12. Sawamura M, Thi Minh Tu N, Onishi Y, Ogawa E, Choi HS. Characteristic odor components of Citrus reticulata Blanco (ponkan) cold-pressed oil. Biosci Biotechnol Biochem. 2004;68:1690–7. 13. Espina L, Somolinos M, Lorán S, Conchello P, García D, Pagán R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control. 2011;22:896–902. 14. Harborne JB, Williams CA. Advances in flavonoid research since 1992.Phytochemistry. 2000;55:481–504. 15. Ho SC, Lin CC. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit ( Citrus reticulate ) peels. J Agric Food Chem. 2008;56:7976–7982. 16. Huang, N.T.; Ferraro, T. Phenolic compounds in food and their effects on health II: antioxidants and cancer prevention. American Chemical Society Washington.1992. 17. Jagetia GC, Reddy TK, Venkatesha VA, Kedlaya RInfluence of naringin on ferric iron induced oxidative damage in vitro. Clinica Chimica Acta. 2004;189–197. 18. Epifano F, Genovese S, Curini M. Auraptene phytochemical and pharmacological: properties. Phytochem Res Prog. 2008 : 145–162. 19. Upadhyay RK, Dwivedi P, Ahmad S. Screening of antibacterial activity of six plant essential oils against pathogenic bacterial strains. Asian J Med Sci. 2010 2:;152–8. 20. Yang EJ, Kim SS, Moon JY, Oh T-H, Baik JS, Lee NH, et al. Inhibitory effects of Fortunella japonica var. margarita and Citrus sunki essential oils on nitric oxide production and skin pathogens. Acta Microbiol Immunol Hung. 2010 57 :;15–27. 21. Yi E, Yoo ES. A novel bioactive fabric dyed with unripe Citrus grandis Osbeck extract part 1: dyeing properties and antimicrobial activity on cotton knit fabrics.Text Res J. 2010;80:2124–2131. 22. Ren-Yeong Huang, Yen-Ling Yu, Wan-Chien Cheng, Chun-Nan OuYang, Earl Fu, and Ching-Liang Chu. ChuImmunosuppressive effect of Quercetin on dendritic cell activation and function. The Journal of Immunology. 2010;184:6815–6821. 23. Benavente-García O, Castillo J: Update on uses and properties of citrus flavonoids:new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56:6185–6205. 24. Chen, H.J., C.P. Chung, W. Chiang, and Y.L. Lin. Ntiinflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chemistry.2011;126:1741–1748. 25. Liu SH, Lin CH, Hung SK, Chou JH, Chi CW, Fu SL. Fisetin Inhibits Lipopolysaccharide-Induced Macrophage Activation and Dendritic Cell Maturation. J. Agric. Food Chem. 2010;58:10831–10839. 26. Miyamoto, S., Yasui, Y., Ohigashi, H., Tanaka, T. et al. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic. 2010;183 (2):276–283. 27. CS, Li S, Liu CB, Miyauchi Y, Suzawa M, Ho CT, et al. Effective suppression of azoxymethane-induced aberrant crypt foci formation in mice with citrus peel flavonoids.Mol Nutr Food Res. 2013;57(3):551–5. 28. Pan MH, Li S, Lai CS, Miyauchi Y, Suzawa M, Ho CT. Inhibition of citrus flavonoids on 12-O tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. Food Sci Human Wellness. 2012;1:65–73. 29. Granucci F, Zanoni I, Ricciardi-Castagnoli P. Central role of dendritic cells in the regulation and deregulation of immune responses. Cell Mol Life Sci. 2008;65:1683–97. 30. Asahina A, Tamaki K. Role of Langerhans cells in cutaneous protective immunity: is the reappraisal necessary? J Dermatol Sci. 2006;44:1–9. 31. Shoko Yokoi, Hironori Niizeki, Hideyuki Iida, Hideo Asada, Sachiko Miyagawa.Adjuvant effect of lipopolysaccharide on the induction of contact hypersensitivity to haptens in mice. Journal of Dermatological Science. 2009;53:120–128. 32. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–62. 33. Martin, S. F. T lymphocyte-mediated immune responses to Chemical haptens and metal ions: implications for allergic and autoimmune disease. Int. Arch. Allergy Immunol. 2004;134:186–198. 34. Vocanson, M. et al. Contribution of CD4+ and CD8+ T-cells in contact hypersensitivity and allergic contact dermatitis. Expert Rev. Clin. Immunol. 2005;1:75–86. 35. Martin, S. F. et al. Fas-mediated inhibition of CD4+ T cell priming results in dominance of type 1 CD8+ T cells in the immune response to the contact sensitizer trinitrophenyl. J. Immunol. 2004;173:3178–3185. 36. Watanabe, H., Unger, M., Tuvel, B., Wang, B. & Sauder, D. N. Contact hypersensitivity: the mechanism of immune responses and T cell balance. J. Interferon Cytokine Res. 2002;22:407–412. 37. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58. 38. Hivroz C, Chemin K, Tourret M, Bohineust A. Crosstalk between T lymphocytes and dendritic cells. Crit Rev Immunol. 2012;32:139–55. 39. Förster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 2012;33:271–80. 40. Kim GY, Han MG, Song YS, et al. Proteoglycan isolated from Phellinus linteus induces toll-like receptors 2- and 4-mediatedmaturation ofmurine dendritic cells via activation of ERK, p38, and NF-κB. Biol Pharm Bul.l. 2004;27:1656–62. 41. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. 1998;188:2175–80. 42. Geldart T, Illidge T. Anti - CD40 monoclonal antibody. Leuk Lymphoma. 2005; 46:1105–13. 43. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, et al. The interleukin-12/interleukin-12 receptor system:Role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521. 44. Teague TK, Marrack P, Kappler JW, Vella AT. IL-6 rescues resting mouse T cells from apoptosis. J Immunol. 1997;158:5791–6. 45. Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009;130:27–33. 46. Yoo JK, Cho JH, Lee SW, Sung YC. IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol. 2002;169:3637–43. 47. Estaquier J, Idziorek T, ZouW, Emilie D, Farber CM, Bourez JM, et al. T helper type 1/T helper type 2 cytokines and T cell death: preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J Exp Med. 1995; 182:1759. 48. Marth T, Zeitz M, Ludviksson BR, Strober W, Kelsall BL. Extinction of IL-12 signaling promotes Fas-mediated apoptosis of antigen-specific T cells. J Immunol. 1999;162:7233. 49. Gasparini C, Feldmann M. NF-κB as a target for modulating inflammatory responses. Curr Pharm Des. 2012;18:5735–45. 50. Wang J,Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, et al. Distinct roles of different NF-kappa B subunits in regulating inflammatory and T cell stimulatory gene expression in dendritic cells. J Immunol. 2007;178:6777–88. 51. Etoh T, Kim YP, Hayashi M, Suzawa M, Li S, Ho CT, et al. Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW246.7 macrophages. Funct Foods Health Dis. 2013;3:242–53. 52. Kidd P. Th1/Th2 balance:The hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8:223–46. 53. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, et al. The interleukin-12 / interleukin-12 receptor system:Role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521. 54. Wang B, Feliciani C, Freed I, Cai Q, Sauder DN. Insights into molecular mechanisms of contact hypersensitivity gained from gene knockout studies. J Leukoc Biol. 2001;70:185–91. 55. Jun Sun., Yi Zhao., Jinhong Hu. Curcumin Inhibits Imiquimod-Induced Psoriasis-Like Inflammation by Inhibiting IL-1beta and IL-6 Production in Mice. 2013;8 (6). 56. Leslie van der Fits, Sabine Mourits, Jane S. A. Voerman, Marius Kant, Louis Boon,Jon D. Laman, et al. Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. J Immunol 2009;182:5836–5845. 57. Kislay Parvatiyar, Zhiqiang Zhang,1Rosane Teles, Songying Ouyang, Yan Jiang,1Zhi-Jie Liu, et al. DDX41 recognizes bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13 (12):1155–1161. 58. Lee Yu-Rim, Jung Ji-Hye, and Kim Hyun-Sook. Hesperidin Partially Restores Impaired Immune and Nutritional Function in Irradiated Mice. Journal of Medicinal Food. 2011;5 (14):475–482.
摘要: 黃酮類化合物為柑橘皮主要之成分,多甲氧基黃酮類屬類黃酮一種,普遍存在於柑橘類並已研究證實具有廣泛的生物活性。許多研究指出多甲氧基黃酮類於抗癌以及化學預防等有發展潛力,藉由抑制致癌物之代謝、抗氧化作用、降低 DNA損傷以及藉由活化細胞凋亡或者抑制細胞內訊號傳遞途徑進而阻止細胞週期正常進行等方式抑制腫瘤生長。橘子水 (Gold lotion)源自於日本用於抗 UV、保護皮膚,含六種不同種柑橘皮之化妝品,近年發現其以口服或皮膚塗抹 Gold lotion方式,無毒性並有抗黑色素瘤、前列腺癌、肝癌、肺癌以及抑制皮膚發炎之效果。 最近幾年研究指出 Gold lotion 有抗發炎以及免疫調節之效果 然而 其 Gold lotion。,作用之細胞及分子機制仍不明確。樹突細胞為抗原呈現細胞,為調控免疫系統之重要角色,於我們研究中,Gold lotion 於樹突細胞中有抗發炎及抑制其功能與成熟,更進一步以管餵動物模式探討 Gold lotion 對於接觸性過敏試驗,以及 Gold lotion 有減弱接觸性過敏之現象。從我們的結果可以提供 Gold lotion 影響樹突細胞於免疫藥理之角色以及具有對有害免疫反應的潛在的治療應用。
Flavonoids are major ingredients of citrus peel and known to have health beneficial properties. Polymethoxylflavones (PMFs), a class of flavonoids, exist almost exclusively in citrus peel and have been demonstrated with wide range of biological activities. Studies have reported that PMFs function as anticancer and chemopreventive agents via the inhibition of metabolic activation of procarcinogens,antioxidant activity, reducing DNA damage and suppression of tumor growth by activating apoptosis or inhibiting intracellular signaling thus blocking cell cycle progression. Gold lotion (GL), a formulated product made from the peels of six citrus fruits in Japan, was originally marketed for cosmetic use for protection of skin from UV irradiation. Subsequently, studies have reported that its anticancer property for melanoma, prostate cancer, lung cancer, and liver cancer without toxicity effect by skin application and oral ingestion. The recent studies has anti-inflammatory and immunomodulatory effects. However, to the best of our knowledge, the cellular and molecular targets of GL in the immune system have remained unclear. Dendritic cells (DCs) are potent antigen presenting cells that control both innate and adaptive immune systems. In our study, we investigated the ability of GL on the maturation and function of dendritic cells (DCs). Furthermore, to explore more the potential health beneficial effect of GL, here we report the bioactivity of GL by oral administration in an animal model. The oral administration of GL attenuated the 2,4-Dinitro-1-fluorobenzene induced contact hypersensitivity (CHS) in animal models. These findings report to provide new insight in the immunopharmacological role of GL in terms of its effects on DC, and impacts, the function of DCs and may have potential therapeutic applications against harmful immune responses.
URI: http://hdl.handle.net/11455/92283
文章公開時間: 2018-07-15
Appears in Collections:生物醫學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.