請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/92364
標題: 利用基因表現量及轉錄因子資料預測基因在特定表徵下的調控關係
Construction of phenotype-specific regulatory programs using gene expression and transcription factor binding data
作者: Te-Wei Tzeng
曾德維
關鍵字: gene expression
transcription factors
ChIP-seq experiments
regulator
基因表達
轉錄因子
ChIP-seq 數據
調控
引用: [1] Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M. et al. (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res, 41, D991-995. [2] Calkhoven, C.F. and Ab, G. (1996) Multiple steps in the regulation of transcription-factor level and activity. Biochem J, 317 ( Pt 2), 329-342. [3] Boulikas, T. (1995) Phosphorylation of transcription factors and control of the cell cycle. Crit Rev Eukaryot Gene Expr, 5, 1-77. [4] Ouyang, J., Valin, A. and Gill, G. (2009) Regulation of transcription factor activity by SUMO modification. Methods Mol Biol, 497, 141-152. [5] Rhodes, D.R., Kalyana-Sundaram, S., Mahavisno, V., Barrette, T.R., Ghosh, D. and Chinnaiyan, A.M. (2005) Mining for regulatory programs in the cancer transcriptome. Nat Genet, 37, 579-583. [6] Tsai, H.K., Lu, H.H. and Li, W.H. (2005) Statistical methods for identifying yeast cell cycle transcription factors. Proc Natl Acad Sci U S A, 102, 13532-13537. [7] Cheng, C., Yan, X., Sun, F. and Li, L.M. (2007) Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics, 8, 452. [8] Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature, 431, 99-104. [9] Cheng, C., Li, L.M., Alves, P. and Gerstein, M. (2009) Systematic identification of transcription factors associated with patient survival in cancers. BMC Genomics, 10, 225. [10] Johnson, D.S., Mortazavi, A., Myers, R.M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497-1502. [11] Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E. et al. (2000) Genome-wide location and function of DNA binding proteins. Science, 290, 2306-2309. [12] Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R. et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100. [13] Lachmann, A., Xu, H., Krishnan, J., Berger, S.I., Mazloom, A.R. and Ma'ayan, A. (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics, 26, 2438-2444. [14] Qin, J., Li, M.J., Wang, P., Zhang, M.Q. and Wang, J. (2011) ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic acids research, 39, W430-436. [15] Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN et al. 2006. The Connectivity Map: using gene‐ expression signatures to connect small molecules, genes, and disease. Science 313(5795): 1929‐1935.. [16] Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S. et al. (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res, 22, 1760-1774. [17] Cheng, C., Min, R. and Gerstein, M. (2011) TIP: a probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles. Bioinformatics, 27, 3221-3227. [18] Pruitt, K.D., Tatusova, T., Brown, G.R. and Maglott, D.R. (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res, 40, D130-135. [19] Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res, 32, D267-270. [20] Essaghir, A., Toffalini, F., Knoops, L., Kallin, A., van Helden, J. and Demoulin, J.B. (2010) Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data. Nucleic Acids Res, 38, e120. [21] Subramanian, Tamayo, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 2005, PNAS 102, 15545-15550. [22] Mootha, Lindgren, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes 2003, Nat Genet 34, 267-273. [23] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene setenrichment analysis: a knowledge-based approach fo interpretinggenome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545–15550. [24] Kaplan T, Li XY, Sabo PJ, Thomas S, Stamatoyannopoulos JA, Biggin MD,Eisen MB: Quantitative models of the mechanisms that control genomewidepatterns of transcription factor binding during early Drosophiladevelopment. PLoS Genet 2011, 7:e1001290. [25] Zhu, M., Liu, C.C. and Cheng, C. (2013) REACTIN: Regulatory activity inference of transcription factors underlying human diseases with application to breast cancer. BMC Genomics, 14, 504. [26] Cheng, C., Min, R. and Gerstein, M. (2011) TIP: a probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles. Bioinformatics, 27, 3221-3227. [27] Lin, Z., Reierstad, S., Huang, C.C. and Bulun, S.E. (2007) Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res, 67, 5017-5024. [28] Kong, S.L., Li, G., Loh, S.L., Sung, W.K. and Liu, E.T. (2011) Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol Syst Biol, 7, 526. [29] Xu, C., Fu, H., Gao, L., Wang, L., Wang, W., Li, J., Li, Y., Dou, L., Gao, X., Luo, X. et al. (2012) BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. [30] Wilkinson-White, L., Gamsjaeger, R., Dastmalchi, S., Wienert, B., Stokes, P.H., Crossley, M., Mackay, J.P. and Matthews, J.M. (2011) Structural basis of simultaneous recruitment of the transcriptional regulators LMO2 and FOG1/ZFPM1 by the transcription factor GATA1. Proc Natl Acad Sci U S A, 108, 14443-14448. [31] Tang Q, Chen Y, Meyer C, Geistlinger T, Lupien M, Wang Q, Liu T, Zhang Y, Brown M, Liu XS. 2011. A comprehensive view of nuclear receptor cancer cistromes. Cancer research 71(22): 6940‐6947. [32] Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. 2009. Potential etiologic and functional implications of genome‐ wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America 106(23): 9362‐9367. [33] David T.W. Tzeng†, Yu-Ting Tseng†, Matthew Ung, I-En Liao, Chun-Chi Liu*, Chao Cheng*. (2014) DPRP: A database of phenotype-specific regulatory programs derived from transcription factor binding data. Nucleic Acids Research 42: D178-183 (†co-first authors, *corresponding authors)
摘要: In the past decades, gene expression profiling has been widely used to result in an enormous amount of expression data available in the public database, in which the data sets are informative in elucidating transcriptional regulation of genes underlying various biological and clinical conditions. However, it is difficult to find the responsible transcription factors (TFs) which regulate the gene expression. With the technical advances in recent years, it facilitates systematically determining the target genes of TFs by ChIP-seq experiments. To support biologists discovering the regulatory programs underlying gene expression profiles, we build up a database of phenotype-specific regulatory programs (DPRP) derived from the integrative analysis of TF binding data and gene expression data. DPRP provides three methods: The Fisher's Exact Test, the Kolmogorov-Smirnov test and the BASE (Binding Association with Sorted Expression) algorithm to facilitate the integration of gene expression and ChIP-seq data for generating new hypotheses on transcriptional regulatory programs in biological and clinical studies.
在這十幾年來,許多研究者建立了不同型態的大規模基因表達資料庫。這些資料庫的數據對於闡述基因在不同病徵和各種生物型態下的轉錄作用有很大的幫助。然而,許多調控關係都是在後轉錄修飾中發生,因此要從基因表達資料去推論導致疾病的關鍵轉錄因子的轉錄調控網路有很高的難度。為了克服這個難題,我們將整合大規模多樣性的基因表達資料和 ChIP-seq/ChIP-chip 數據來建立一個探索疾病關鍵轉錄因子的調控網路 (Database of Phenotype-specific RegulatoryPrograms, DPRP)。 在 DPRP 網站,使用者可以上傳藥物處理和疾病相關的基因表達數據,我們實作了三種演算法來幫助使用者作線上分析 如此可以探討該數據的轉錄調控網路。,這三種演算法分別是: The Fisher's Exact Test, the Kolmogorov-Smirnov test and theBASE (Binding Association with Sorted Expression) 演算法。 雖然我們已經蒐集了大規模的 ENCODE 的轉錄因子數據以及 NCBI GEO 的基因表達數據,但我們預期在接下來幾年會有更多 ChIP-seq 數據出現,而我們也將會持續維護並更新這個網站來確保 DPRP 可以具備完整的轉錄因子數據,這將為使用者提供一個在生物學以及臨床醫學上一個功能強大的分析工具。
URI: http://hdl.handle.net/11455/92364
其他識別: U0005-3105201509492000
文章公開時間: 2018-07-15
顯示於類別:基因體暨生物資訊學研究所

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7101019011-1.pdf1.66 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。