Please use this identifier to cite or link to this item:
標題: 以in vivo和in vitro模型進行克雷白氏肺炎桿菌1084的microcin E492與colibactin的功能性分析
Functional analysis of microcin E492 and colibactin in Klebsiella pneumoniae 1084 using in vivo and in vitro models
作者: Yi-Jhen Huang
關鍵字: Klebsiella pneumoniae 1084
microcin E492
引用: 1. Cowan, S.T., et al., A classification of the Klebsiella group. J Gen Microbiol, 1960. 23: p. 601-12. 2. Foster, W.D. and J. Bragg, Biochemical classification of Klebsiella correlated with the severity of the associated disease. J Clin Pathol, 1962. 15: p. 478-81. 3. Podschun, R. and U. Ullmann, Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1998. 11(4): p. 589-603. 4. Lai, Y.C., et al., Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One, 2014. 9(5): p. e96292. 5. Stahlhut, S.G., C. Struve, and K.A. Krogfelt, Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner. J Med Microbiol, 2012. 61(Pt 3): p. 317-22. 6. Miethke, M. and M.A. Marahiel, Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev, 2007. 71(3): p. 413-51. 7. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis. FEMS Microbiol Rev, 2003. 27(2-3): p. 215-37. 8. Hider, R.C. and X. Kong, Chemistry and biology of siderophores. Nat Prod Rep, 2010. 27(5): p. 637-57. 9. Vassiliadis, G., et al., Insight into siderophore-carrying peptide biosynthesis: enterobactin is a precursor for microcin E492 posttranslational modification. Antimicrob Agents Chemother, 2007. 51(10): p. 3546-53. 10. Destoumieux-Garzon, D., et al., Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals, 2006. 19(2): p. 181-91. 11. Neilands, J.B., Siderophores: structure and function of microbial iron transport compounds. J Biol Chem, 1995. 270(45): p. 26723-6. 12. Bieler, S., et al., Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol, 2006. 188(20): p. 7049-61. 13. Corsini, G., et al., The expression of genes involved in microcin maturation regulates the production of active microcin E492. Biochimie, 2002. 84(5-6): p. 539-44. 14. Lagos, R., et al., Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol, 2009. 10(1): p. 74-85. 15. de Lorenzo, V., Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol, 1984. 139(1): p. 72-5. 16. Marcoleta, A., et al., Whole-Genome Sequence of the Microcin E492-Producing Strain Klebsiella pneumoniae RYC492. Genome Announc, 2013. 1(3). 17. Destoumieux-Garzon, D., et al., Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol, 2003. 49(4): p. 1031-41. 18. Martin, P., et al., Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog, 2013. 9(7): p. e1003437. 19. Marcoleta, A., et al., Microcin e492 amyloid formation is retarded by posttranslational modification. J Bacteriol, 2013. 195(17): p. 3995-4004. 20. Maroncle, N., et al., Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect Immun, 2002. 70(8): p. 4729-34. 21. Marcq, I., et al., The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli. J Infect Dis, 2014. 210(2): p. 285-94. 22. Nougayrede, J.P., et al., Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 2006. 313(5788): p. 848-51. 23. Homburg, S., et al., Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett, 2007. 275(2): p. 255-62. 24. Wadolkowski, E.A., D.C. Laux, and P.S. Cohen, Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect Immun, 1988. 56(5): p. 1030-5. 25. Favre-Bonte, S., et al., Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun, 1999. 67(11): p. 6152-6. 26. Ye, P., et al., Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol, 2001. 25(3): p. 335-40. 27. Fossiez, F., et al., T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med, 1996. 183(6): p. 2593-603. 28. Jovanovic, D.V., et al., IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol, 1998. 160(7): p. 3513-21. 29. Rankin, S.M., D.M. Conroy, and T.J. Williams, Eotaxin and eosinophil recruitment: implications for human disease. Mol Med Today, 2000. 6(1): p. 20-7. 30. Conroy, D.M. and T.J. Williams, Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res, 2001. 2(3): p. 150-6. 31. Deckers, J.G., et al., IL-4 and IL-13 augment cytokine- and CD40-induced RANTES production by human renal tubular epithelial cells in vitro. J Am Soc Nephrol, 1998. 9(7): p. 1187-93. 32. Matter, C.M. and C. Handschin, RANTES (regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation, 2007. 115(8): p. 946-8. 33. Goswami, R. and M.H. Kaplan, A brief history of IL-9. J Immunol, 2011. 186(6): p. 3283-8. 34. Cuevas-Ramos, G., et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A, 2010. 107(25): p. 11537-42. 35. Abdalla, S.I., I.R. Sanderson, and R.C. Fitzgerald, Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis, 2005. 26(9): p. 1627-33. 36. Baldwin, A.S., Jr., Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest, 2001. 107(1): p. 3-6.
摘要: Klebsiella pneumoniae is an important pathogen belonging to the family enterobacteriaceae. It is a common cause of community- or hospital-acquired infections including pneumonia, bacteremia, liver abscess, meningitis, urinary tract infections, and wound infections. The major virulence factors of K. pneumoniae includeing lipopolysaccharides, capsule polysaccharides, adhesion factors, and siderophores. Serotype K1 is the most important and common serotype in Taiwan. K. pneumoniae 1084 is a K1 strain isolated from liver abscess in Taiwan. Complete genome sequencing revealed a 208 kb genome islands, KPHPI208. The 208-kb genomic island contains eight genomic modules (GM1~GM8), including a pks colibactin gene cluster, a microcin module (GM6), a gene cluster for yersiniabactin siderophore production, an ICE module, and other GMs of functions . In this study, we performed functional analysis on microcin E492 (GM6) and the colibactin (GM1) module in K.pneumoniae 1084. First, the toxicity of GM1 and GM6 were tested on K.pneumoniae 1084 and K.pneumoniae 1084 mutants (ΔclbA、ΔmceAB、ΔclbAΔmceAB) with difference E. coli strains. Second, in order to decipher the contribution of GM1 and GM6 in pathogenesis, both oral (OP) and intraperitoneal (IP) infection models on mice were performed. GM1 knockout strain resulted in reduced lethality in both OP and IP models. In contrast, knockout GM6 (ΔmceAB) resulted in reduced gut colonization in OP model but a high mice fatality rate in IP experiment. The contribution of GM6 to OP virulence by suppressing gut flora was further confirmed by administration of streptomicin prior to OP infection. Analysis of protein markers has identified inflammation signals in mice colon and intestine. The serum cytokines profile were also analysed for the OP infection model.
克雷白氏肺炎菌(Klebsiella pneumoniae 1084)屬於革蘭氏陰性腸內菌,是一種常見於社區性感染及院內感染的伺機性感染病原。在台灣以血清型K1株最常見,且毒性較強。K. pneumoniae 1084 為一分離自台灣肝膿瘍患者的K1株。先前本研究室將K. pneumoniae 1084進行全基因體序列解碼,發現一個208 kb的基因體小島,稱為KPHPI208。基因體小島包含了microcin E492、colibactin、siderophores等共八個基因小島模組。本篇研究目的是針對K. pneumoniae 1084 中負責製造colibactin以及microcin E492 的基因小島模組進行功能性分析。第一部份以體外模式探討這兩個基因小島模組克雷白氏肺炎菌中的功能,是否可以抑制其他細菌生長。第二部分則使用兩種小鼠感染模式探討這些基因小島模組對克雷白氏肺炎菌感染與致病的貢獻。我們分別利用腹腔注射及口餵灌食兩種不同的小鼠感染模式,解析colibactin和microcin E492這兩個基因體小島模組的基因剔除株在致病性與毒性上的差異。我們的結果發現,從致死率來看,無論是哪一種小鼠感染模式下,剔除colibactin基因均導致細菌的毒性變弱。然而剔除microcin基因的實驗裡,口餵灌食感染模式的毒性雖然變弱,但是腹腔注射感染模式的毒性卻增強了。我們推論microcin的生產可幫助野生株 (K. pneumoniae 1084S)排除原生腸內菌叢的角色,因而在口餵灌食感染模式中有較高的毒性。我們進一步先以抗生素添加於小鼠的飲用水中,再進行口餵灌食感染實驗,結果發現小鼠腸道內,無論是野生株或基因小島的各種基因剔除株,他們的腸道定殖能力都明顯提高了。我們也對口餵灌食感染模式的小鼠進行腸道的各種蛋白質標記的免疫分析,結果發現了與發炎相關的標記。血液免疫分析的結果也佐證明了剔除microcin基因的確降低了細菌的毒力。這個研究的結果顯示microcin基因模組在K. pneumoniae 1084 中扮演著很重要的與致病相關的角色。這些基因體小島模組毒性的表現與調控機制尚未明瞭,是未來值得進一步深入探討的。
其他識別: U0005-2907201511100000
文章公開時間: 2018-08-05
Appears in Collections:基因體暨生物資訊學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.