請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/92611
標題: 番木瓜性別決定之潛在基因探討
The Exploration of Predictive Sex-Determination Genes in Papaya
作者: 簡怡文
Yi-Wen Chien
關鍵字: 番木瓜
性別
轉錄體
Papaya
Sex
Transcripts
引用: 王仁晃。2011。木瓜栽培管理要點。高雄區農業改良場技術專刊-木瓜健康管理技術專刊:1-15。 王德男。1990。本省木瓜優良品種簡介。行政院農業委員會農業試驗所技術服務季刊01:17-21。 王德男、劉碧鵑、李文立。2006。台灣木瓜產業之變遷。行政院農業委員會農業試驗所特刊125號-台灣木瓜產業發展研討會專刊:1-20。 行政院農委會種苗改良繁殖場。2004。番木瓜-種苗七號生育特性及栽培管理。 李文立。2009。夏威夷木瓜產業概況。農業試驗所技術服務 78:13-15。 李文立。2010。生物技術在果樹品種選育之應用-番木瓜性別檢測。植物種苗生技 21:23-27。 李美娟。2008。番木瓜MADS box E-class基因CpMADS1, CpMADS3與TM6 lineage gene CpMADS2之選殖與分析。國立臺灣大學園藝學研究所博士學位論文。 李美娟、謝明憲、張龍生。2009。番木瓜植株性別決定花器變動。植物種苗 11:57-69。 余亞白。2004。番木瓜。台灣果樹:82-88。廈門,廈門大學出版社。 邱年永、張光雄。2001。番木瓜。原色台灣藥用植物圖鑑 6:130-131。台北市,南天。 邱展臺。2000。番木瓜全兩性株品系性別遺傳與園藝性狀之研究。國立屏東科技大學熱帶農業研究所碩士學位論文。 邱展臺。2006。番木瓜兩性株育種。行政院農業委員會農業試驗所特刊125號-台灣木瓜產業發展研討會專刊:51-62。 林廣光、崔百明、彭明。2007。SERK基因家族的研究進展。遺傳HEREDITAS (Beijing) 29(6):681-687。 洪苡萱。2011。改變積儲影響番木瓜營養與生殖生長。臺灣大學園藝學研究所碩士學位論文。 陳福旗譯(W. B. Storey原著)。1986。番木瓜之演進。中國園藝 32:146-150。 婁群峰、余紀柱、陳進楓、庄飛雲。2002。植物性別分化的遺傳基礎與標記物研究。植物學通報 19:684-691。 黃士晃、張錦興、林棟樑。2009。番木瓜種苗及繁殖方式簡介。台南區農業專訊 70:3-6。 黃祥益。2011。植物性別決定的染色體機制。高雄區農業改良場研究彙報21(2):1-9。 壽森炎、汪俏梅。2000。高等植物別分化研究進展。植物學通報 17:528-535。 應紹舜。1992。蕃瓜樹科。台灣高等植物彩色圖誌 4:234-236。新北市,六景彩色印刷有限公司。 謝明憲、張龍生。2002。兩性株性型表現在番木瓜品種間之差異。中國園藝48:211-218。 Albrecht, C., E. Russinova, V. Hecht, E. Baaijens, S. de Vries. 2005. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES 1 and 2 control male sporogenesis. The Plant Cell 17: 3337–3349. Becker, A. and G. Theißen. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29: 464-489. Brooke-Powell, E. T., T. N. Mandal, J. M. Ajioka. 2004. Use of transcritor reverse transcriptase in microarray analysis. Biochemica 1: 27-30. Chasan, R. and V. Walbot. 1993. Mechanisms of plant reproduction: questions and approaches. Plant Cell 5:1139-1146. Ching, M. W., R. Ming, P. H. Moore, R. E. Paull, Q. Yu. 2010. Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Tropical Plant Biology 3:171-181. Chiu, C.-T., C.-R. Yen, L.-S. Chang, C.-H. Hsiao, T.-S. Ko and W. E. Weber. 2003. All hermaphrodite progeny are derived by self-pollinating the sunrise papaya mutant. Plant Breeding 122: 431-434. Gschwend, A. R., Q. Yu, P. Moore, C. Saski, C. Chen, J. Wang, J.-k. Na, R. Ming. 2011. Construction of papaya male and female BAC libraries and application in physical mapping of the sex chromosomes. Journal of Biomedicine and Biotechnology volume 2011, article ID 929472, 7 pages. Hecht, V., J.P. Vielle-Calzada, M.V. Hartog, E.D. Schmidt, K. Boutilier, U. Grossniklaus, S.C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology 127:803-816. Hofmeyr, J. D. 1967. Some genetic and breeding aspects of Carica papaya. Agronomia Tropical 17: 345-351. Horovitz, S., H. Jimenez. 1967. Cruzamientos interespecíficos e intergenéricos en Caricaceas y sus implicaciones fitotécnicas. Agronomía Tropical 17: 323-344. Kwaaitaal, M. A. C. J., S. C. de Vries, and E. Russinova. 2005. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis. Protoplasma 225:55-65. Lee, B. H., A. N. Wynn, R. G. Franks, Y.-S. Hwang, J. Lim, J. H. Kim. 2014. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development. Developmental Biology 386(1): 12-24. Li, H. H., J. He, M. H. Su, R. Y. Lai. 2008. Review of Studies on Sex Differentiation in Carica papaya. Subtropical Plant Science 37(4):64-68. Louis, R., T. Christophe, M. Patrice and N. Ioan. 2011. Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana. Annals of Botany 107: 1453-1463. Ming, R., S. Hou, Y. Feng, Q. Yu, A. Dionne-Laporte, J. H. Saw, P. Senin, W. Wang, B. V. Ly, K. L. Lewis, S. L. Salzberg, L. Feng, M. R. Jones, R. L. Skelton, J. E. Murray, C. Chen, W. Qian, J. Shen, P. Du, M. Eustice, E. Tong, H. Tang, E. Lyons, R. E. Paull, T. P. Michael, K. Wall, D. W. Rice, H. Albert, M. L. Wang, Y. J. Zhu, M. Schatz, N. Nagarajan, R. A. Acob, P. Guan, A. Blas, C. M. Wai, C. M. Ackerman, Y. Ren, C. Liu, J. Wang, J. Wang, J. K. Na, E. V. Shakirov, B. Haas, J. Thimmapuram, D. Nelson, X. Wang, J. E. Bowers, A. R. Gschwend, A. L. Delcher, R. Singh, J. Y. Suzuki, S. Tripathi, K. Neupane, H. Wei, B. Irikura, M. Paidi, N. Jiang, W. Zhang, G. Presting, A. Windsor, R. Navajas-Pérez, M. J. Torres, F. A. Feltus, B. Porter, Y. Li, A. M. Burroughs, M. C. Luo, L. Liu, D. A. Christopher, S. M. Mount, P. H. Moore, T. Sugimura, J. Jiang, M. A. Schuler, V. Friedman, T. Mitchell-Olds, D. E. Shippen, C. W. dePamphilis, J. D. Palmer, M. Freeling, A. H. Paterson, D. Gonsalves, L. Wang, M. Alam. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 24;452(7190):991-6. Ming, R., Q. Yu, and P. H. Moore. 2012. Papaya genome and genomics. Genomics of Tree Crops: 241-259. Moore, P. H. and R. Ming. 2008. Papaya genome: A model for tropical fruit trees and beyond. Tropical Plant Biology 1:179-180. Nakasone, H. Y. and C. Lamoureux. 1982. Transitional forms of hermaphroditic papaya flowers leading to complete maleness. Journal of the American Society Horticultural Science 107(4):589–592. Song, S., T. Qi, H. Huang, D. Xie. 2013. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Molecular Plant 6: 1065-1073. Storey, W.B. 1953. Genetics of the papaya. J. Hered 44:70-78. Vyskot, B. and R. Hobza. 2015. The genomics of plant sex chromosomes. Plant Science 236: 126-135. Zang, W., X. Wang, Q. Yu, R. Ming, J. Jiang. 2008. DNA methylation and heterochromatinization in the male specific region of the primitive Y chromosome of papaya. Genome Research 18: 1938-1943. Zang, W., C. M. Wai, R. Ming, Q. Yu, J. Jiang. 2010. Intergation of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Tropical Plant Biology 3:166-170.
摘要: 番木瓜具有雄株、雌株與兩性株三種性別株,為熱帶及亞熱帶地區重要的經濟作物,絕大多數國家均以兩性株之番木瓜為主要種植的株性,因而許多研究人員致力於番木瓜性別的早期判別以及提升兩性株比例的研究。 本研究以次世代定序建構之轉錄體與基因體,於NCBI網站及KASS網站蒐集相關資料進行序列比對,整理出次世代定序建構的番木瓜轉錄體之BAC sequence、KEGG annotation以及BLAST annotation資料。依照番木瓜性別控制假說:M1控制雄性、M2控制兩性、m為雌性的標記,以不同番木瓜株性的轉錄本(transcript)表現量兩兩比較的方式,篩選不同的目標基因,以探索在可能造成不同番木瓜性別間差異的轉錄本(包含可能為造成M1與M2差異的轉錄本、造成m'與m差異的轉錄本、造成M2與m差異的轉錄本以及造成M1與m差異的轉錄本)。 本研究並將29個轉錄本進行生物驗證的表現量分析,從中探討可能和番木瓜性別控制相關的轉錄本,進一步篩選出次世代定序與Real-time PCR相符合的16個轉錄本,再根據其比對到的註解資料以及表現量的分析,篩選出8個在番木瓜性別控制上扮演重要角色之轉錄本。
Carica Papaya is an economically important fruit in the tropic and subtropics regions. It has three sexual types including male, female and hermaphrodite. As the hermaphrodite papaya cultivars are preferred over the two other types, many researches have been done regarding the early differentiation of the papaya sex type and how to increase the ratio of hermaphrodite papaya. In this study, we utilized next generation sequencing technology to construct the transcriptome of papaya. To annotate the papaya transcriptome, we used the papaya transcripts to perform BLAST with NCBI RefSeq database and KASS database. We constructed the papaya database including papaya's BAC sequences, KEGG annotation, and BLAST annotation. To obtain the sex-determination transcripts, we selected from different sex type papaya in accordance with the hypothesis of papaya sex control: The male with M1, the female with m, and the hermaphrodite with M2. To further verify the predicted sex-determination transcripts, 29 transcripts were selected to perform real-time PCR and 8 transcrupts found to play important role in regulating the sex expression of papaya.
URI: http://hdl.handle.net/11455/92611
其他識別: U0005-0708201500313700
文章公開時間: 10000-01-01
顯示於類別:生命科學院碩士在職專班

文件中的檔案:
檔案 大小格式 
nchu-104-5100052001-1.pdf2.64 MBAdobe PDF 請求副本
顯示文件完整紀錄
 
TAIR 相關文章
 
Citations:


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。