Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9278
標題: 應用於V頻段無線通訊系統之巴倫器與降頻混頻器設計
Designs of Baluns and Down-Conversion Mixers for V-band Wireless Communication System
作者: 陳崇正
Chen, Chung-Cheng
關鍵字: V頻段
V-band
混頻器
Marchand巴倫器
源極退化
摺疊式混頻器
電流注入技巧
CMOS 90奈米製程
mixer
Marchand balun
source degeneration
folded mixer
current bleeding technique
CMOS 90nm process technology
出版社: 電機工程學系所
引用: [1]http://people.cs.nctu.edu.tw/~wangyc/publications/reports /r003-book06-uwb.pdf [2]http://zh.wikipedia.org/wiki/IEEE_802 [3]劉佳協,‘‘60-GHz毫米波CMOS射頻前端RFICs及關鍵被動元件之研究設計”, 國立成功大學電腦與通信工程研究所碩士論文,七月,2007年。 [4]A. Boveda, F. Orgitoso, and J. I. Alonso, “A 0.7-3GHz QPSK/QAM direct modulator,” IEEE Journal Solid-Sate Circuits, vol. 28, no.12, pp. 1340-1349, Dec. 1993. [5]“60 GHz Wireless Communications,” http://windowsil.org/2008/03/13/60-ghz-wireless- communications/ [6]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowly, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60GHz radio: enabling next-generation wireless applications,” in Proc. TENCON 2005, pp. 1-6, Nov. 2005. [7]吳明蔚,‘‘應用於無線區域網路802.11a與60GHz毫米波之功率放大器設 計”,國立中興大學電機工程學系碩士論文,七月,2011年。 [8]吳兼百,‘‘應用於無線區域網路802.11a,24GHz與60GHz之射頻發射器子電 路設計”,國立中興大學電機工程學系碩士論文,一月,2013年。 [9]X. Lai and F. Yuan, “A comparative study of low-power CMOS Gilbert mixers in weak and strong inversion,” in 2011 IEEE 54th International MWSCAS, Aug. 2011. [10]N. Zoka, E. Kargaran, G. Nabovati, and H. Nabovati, “An ultra low-voltage, ultra low-power CMOS mixer using the body effect,” in 2011 IEEE 54th International MWSCAS, Aug. 2011. [11]G. Kathiresan and G. Toumazou, “A low voltage bulk driven down-conversion mixer core,” IEEE Proceedings of International Symposium on Circuit and Systems, pp 589- 601, vol. 2, May 1999. [12]M.-G. Kim, H.-W. An, Y.-M. Kang, J.-Y. Lee, and T.-Y. Yun, “A low-voltage, low-power, and low-noise UWB mixer using bulk-injection and switched biasing techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2486-2493, Aug. 2012. [13]D. van Vorst and S. Mirabbasi, “Low-voltage bulk-driven mixer with on-chip balun,” IEEE Proceedings of International Symposium on Circuit and Systems, pp. 456- 659, May 2008. [14]C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “A 10–35 GHz low power bulk-driven mixer using 0.13-μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 455-457, July 2008. [15]H.-K. Chiou and H.-T. Chou, “An ultra low-power V-band source-driven down- conversion mixer with low-loss and broadband asymmetrical broadside-coupled balun in 90-nm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2620-2631, July 2013. [16]M. Madihian, L. Desclos, K. Maruhashi, K. Onda, and M. Kuzuhara, “60-GHz monolithic down- and up-converters utilizing a source-injection concept,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 7, pp. 1003-1006, July 1998. [17]J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang, “A 25–75 GHz broadband Gilbert- cell mixer using 90-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 247-249, Apr. 2007. [18]M. Kim, J. Lee, and T. Yun, “Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques,” IEEE Electronic Letters, vol. 48, no. 23, pp. 1476-1478, Nov. 2013. [19]K. Xuan, K. F. Tsang, S. C. Lee, and W. C. Lee, “A current bleeding mixer based on Gilbert-cell featuring LO amplification,” in IEEE international SOCC, pp. 137- 140, Sept. 2009. [20]H.-H. Chiang, F.-C. Huang, C.-S. Wang, and C.-K. Wang, “A 90 nm CMOS V- band low-noise active balun with broadband phase-correction technique,” IEEE Journal of Solid-State Circuits, vol. 46, no.11, pp. 2583-2591, Nov. 2011. [21] H.-H. Chiang, F.-C. Huang, C.-S. Wang, and C.-K. Wang, “A 63GHz low noise active balun with broadband phase-correction technique in 90 nm CMOS,” in Proc.of IEEE Asia Solid State Circuit Conference (A-SSCC), pp. 1-4, Nov. 2010. [22] M. Kraemer, M. Ercoli, D. Dragomirescu, R. Plana, and W. C. “A wideband single-balanced down-mixer for the 60 GHz band in 65 nm CMOS,” in Proc. of Asia-Pacific Microwave Conference (APMC), pp. 1849-1852, Dec. 2010. [23] T.-Y. Yang, W.-R. Lien, C.-C. Yang, and H.-K. Chiou, “A compact V-band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microwvave and Wireless Components Letters, vol. 17, no.7, pp. 537-539, July 2007. [24] B. Razavi, RF Microelectronics, Prentice Hall, 1998. [25] B. Razavi, RF Microelectronics, Prentice Hall, 2011. [26] 郭信智,‘‘應用於60-GHz CMOS毫米波射頻接收機前端電路之研製”,國立成功大學電腦與通信工程研究所碩士論文,七月,2008年。 [27] 魏宏儒,‘‘應用於直接升頻系統之雙閘極混頻器與低電壓折疊式混頻器設計與實作”,國立成功大學微電子工程研究所碩士論文,七月,2005年。 [28] B. Gilbert, “The micromixer: A highly linear variant of the Gilbert mixer using a bisymmetric class-AB input stage,” IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1412-1413, September 1997. [29] K. L. Fong, C. D. Hull, and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 3, pp. 231-239, March 1999. [30] 呂鎮安,‘‘應用於數位電視頻帶之平衡不平衡轉換器設計”,國立中央大學電機工程研究所碩士論文,六月,2007年。 [31] 邱俊傑,‘‘應用於WiMAX 3.5GHz頻段射頻接收機前端電路之設計與製作”, 逢甲大學資訊電機工程碩士在職專班碩士論文,七月,2007年。 [32] 陳思源,‘‘CMOS高耦合分波器之設計”,國立中興大學電機工程研究所碩士論文,七月,2009年。 [33] 賴思涵,‘‘CMOS微型化Balun之設計”,國立中興大學電機工程研究所碩士論文,七月,2008年。 [34] B. H. Lee, D. S. Park, S. S. Park, and M. C. Park, ‘‘Design of new three-line balun and its implementation using multilayer configuration,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1405-1413, April 2006. [35] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P. Kossives, ‘‘Design and characterization of multilayer spiral transmission-line balun,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1841-1847, Sept. 1999. [36] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, and P. R. Smith, ‘‘A silicon monolithic spiral transmission-line balun with symmetrical design,” IEEE Electron Device Letters, vol. 30, no. 4, pp. 182-184, April 1999. [37] David M. Pozar,‘‘微波工程”,高利圖書有限公司 July 2010. [38] 邱樺岳,‘‘高線性度、低電壓CMOS混頻器與新式倍頻器及耦合器單晶微波積體電路之研製”,國立成功大學光電科學與工程研究所碩士論文,七月,2007年。 [39] Q. Sun, J. Yuan, V. Vo, and A. Rezazadeh, “Design and realization of spiral Marchand balun using CPW multilayer GaAs technology,” Proceedings of 36th European Microwave Conference, pp. 68-71, Sept. 2006. [40] N. Marchand, “Transmission-line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142-145, 1994. [41] J. X. Liu, C. Y. Hsu, H. R. Chuang, C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” IEEE RFIC Symposium, pp. 445-448, June 2007. [42] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15–25, 2000. [43] 李威廷,‘‘2.4GHz CMOS單混頻器射頻收發機與5GH功率放大器RFIC及高 Q值螺旋電感之設計研究”,國立成功大學電機工程學系碩士論文,六月,2004年。 [44] S. G. Lee and J.-K. Choi, “Current-reuse bleeding mixer,” IEEE Electronic Letters, vol. 36, no.8, pp. 696-697, Apr. 2000. [45] L. A. NacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 365-368, May 1998. [46] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw Hill, 2003. [47] D. Ahn, D. W. Kim, and S. Hong, “A K-band high-gain down-conversion mixer in 0.18μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 19, no. 4, pp. 227-229, April 2009. [48] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, S. Lee, and B. Kim, “A new RF CMOS Gilbert mixer with improved noise figure and linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 3, pp. 626-631, Mar. 2008. [49] B. Razavi, “A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006. [50] 黃家洋,‘‘應用於無線區域網路802.11a、24GHz與60GHz知射頻接收前端電路設計”,國立中興大學電機工程學系碩士論文,七月,2011年。 [51] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Transaction on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011. [52] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down- conversion ring mixers for multistandard MMW radio applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678, March 2012. [53] C. W. Byeon, J. J. Lee, and C. S. Park, “A 60 GHz current-reuse LO-boosting mixer in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 3, pp. 135-137, March 2012. [54] J. H. Lee and Y. S. Lin, “60 GHz CMOS down-conversion mixer with 15.46 dB gain and 64.7 dB LO-RF isolation,” Electronics Letters, vol. 49, no. 4, pp. 264-266, February 2013. [55] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 53–70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May 2013. [56] B. Razavi,‘‘類比CMOS積體電路設計”,滄海書局, March 2008. [57] T. A. Phan, C. W. Kim, M. S. Kang, S. G. Lee, and C. D. Su, “Low noise and high gain CMOS down conversion mixer,” Proc. of ICCCAS, vol. 2, no. 8, pp. 1191-1194, June 2004. [58] J. Xu, C. E. Saavedra, and G. Chen, “A 12 GHz-bandwidth CMOS mixer with variable conversion gain capability,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp. 565-567, Oct. 2011. [59] I-C. Chen and J.-R. Yang, “2 - 13GHz broadband CMOS low voltage mixer with active balun designed for UWB systems,” in IEEE International Conference on Electron Devices and Solid-State Circuits, 15-17, Dec. 2010. [60] F.-C. Chang, P.-S. Wu, M.-F. Lei, and H. Wang, “A 4–41 GHz singly balanced distributed mixer using GaAs pHEMT technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 136-138, Feb. 2007. [61] S. Zhou and M.-C. F. Chang, “A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1084–1093, May 2005.
摘要: 摘要 本論文探討應用於V頻段無線通訊系統之巴倫器與降頻混頻器設計,內容包含元件及電路設計、模擬分析、晶片量測、結果討論。論文整體主軸可分為五個章節: 第一章簡述研究背景,並對過去相關的研究做一個簡單的介紹。 第二章為混頻器的原理介紹,介紹混頻器的基本概念、常見的混頻器基本架構與各項效能參數討論。 第三章為應用於V頻段的巴倫器研究。在此章我們首先介紹巴倫器的參數與一些常見的架構,最後使用台積電90nm CMOS製程下,設計了三個應用於60GHz的Marchand 巴倫器並透過ADS做電磁模擬。 第四章為應用於60GHz降頻混頻器之設計,可分為外差式降頻與直接降頻式兩種系統架構。在超外差式降頻方面,首先先介紹之前實驗室學長所設計利用平方律架構的混頻器,此混頻器可將60GHz射頻訊號降至12GHz。其次介紹我所設計的混頻器,此混頻器亦可將60GHz射頻訊號降至12GHz。最後介紹我所設計的混頻器,此電路是透過源極退化技巧與摺疊式混頻器來改善傳統吉伯特電路的雜訊與線性度,使其可以將12GHz中頻訊號降至基頻。在直接降頻方面,在原本吉伯特電路下加上了改良後的電流注入技巧,藉以改善其增益與線性度,使其可以將60GHz射頻訊號直接降至基頻。而以上的製程皆是使用台積電90nm CMOS製程。 最後,第五章則總結各章的研究成果並探討未來的研究方向。
Abstract This thesis presents the designs of baluns and down-conversion mixers for V-band wireless communication systems. The content includes the circuit design, simulation analysis, chip measurement results, and a short discussion. This thesis consists of five main parts: In Chapter one, we will briefly introduce our research background and review some studies about this thesis. In Chapter two, we introduce design concepts of mixers, and discuss general considerations in the design of mixers. Furthermore, we describe conventional topologies and performance parameters of mixers. In Chapter three, we present the study of V-band baluns. At first, we describe the performance parameters and some topologies of baluns. Then, designs of three 60GHz Marchand baluns and simulation results by using ADS Momentum EM tool under TSMC 90nm CMOS process technology are presented. In Chapter four, the mixer designs for 60GHz applications in two types of architectures, heterodyne and homodyne, are presented. In the heterodyne receiver, we introduce a square law mixer design by a senior member of our laboratory at first. That square law mixer down-converts the RF signal from 60GHz to 12GHz IF band. Second, we introduce another mixer design that also down-converts the RF signal from 60GHz to 12GHz IF band. Finally, we introduce a mixer design by using source degeneration and folded topology to improve Gilbert cell’s noise figure and linearity. This folded mixer down- converts the IF signal from 12GHz to the baseband. In the homodyne counterpart, we introduce a mixer which bases on the Gilbert cell and we add the improved current bleeding technique. By doing so, the conversion gain and the linearity of the mixer are improved. The homodyne mixer down-converts the RF signal from 60GHz to the baseband directly. All of the circuits are designed in the TSMC 90nm CMOS process technology. In Chapter five, we make a simple conclusion and shortly discuss the possible study for future work.
URI: http://hdl.handle.net/11455/9278
其他識別: U0005-2708201319585200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708201319585200
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.