Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92929
標題: Designing and Developing A Personalized Location-based Mobile Tourism Application
基於適地性服務建置個人化行動旅遊行程推薦平台
作者: 蔡佳倫
Jia-Lun Tsai
關鍵字: iBike
Location-based Services
Ant Colony Optimization
臺中公共自行車租借服務
適地性服務
蟻群最佳化演算法
引用: 中文文獻 王永誠、朱宏哲與張維羽(2013)。行動裝置APP發展趨勢─淺談HTML 5,中華技術專題報導,97,142 - 151。取自 http://www.ceci.org.tw/book/97/web/142-151.pdf 交通部觀光局(2015)。103年國人旅遊狀況調查。取自 http://admin.taiwan.net.tw/upload/contentFile/201507/103年國人旅遊調查摘要.doc 交通部觀光局(2015)。國人國內旅遊總旅次變化。取自http://admin.taiwan.net.tw/upload/public/20150206/f2dc9311-65f8-48fb-9595-fdd3bbf4d51d.xls 李淑芳與紀文章(2005)。年輕消費者行動電話上網便利性之研究,經濟與管理論叢,1(2),163 - 186。 李起毓(2007)。以混合啟發式演算法求解空間裝載利用率的最佳化問題(未出版之碩士論文),朝陽科技大學,臺中市。 余書玫(2009)。公共自行車租借系統選擇行為之研究(未出版之碩士論文)。國立交通大學,新竹市。 呂庭宇(2010)。行動定位服務之智慧型即時旅遊資訊分享系統(未出版之碩士論文),北台灣科學技術學院,臺北市。 沈柏翰(2010)。LBS與未來行動學習。數位典藏與學習電子報,9(9)。取自http://newsletter.teldap.tw/news/ProgramTourismContent.php?nid=3976&lid=447 李子源、吳敏仙、王兆郁與李雅娟(2013年1月)。以短期旅遊為目的之汽車租賃方案決策分析。第十六屆決策分析研討會,國立清華大學。 金柏均(2013)。花蓮旅遊景點查詢及推薦系統(未出版之碩士論文),國立東華大學,花蓮縣。 冼卉堉(2013)。facebook適地性打卡行為與網路口碑關聯性之研究─以宜蘭餅發明館為例(未出版之碩士論文)。中國文化大學,新北市。 波仕特線上市調(2014)。手機APP及使用習慣調查報告,波仕特雙週報。取自http://www.pollster.com.tw/Aboutlook/lookview_item.aspx?ms_sn=2452 范景怡、高侑成、黃謙順與曾國城(2013年8月)。運用資料探勘技術於混合式推薦系統預測整合之研究,第九屆知識社群國際研討會,中國文化大學。 陳雅雯(2007)。蟻群最佳化演算法於生態旅遊路線規劃之研究(未出版之碩士論文),立德管理學院,臺南市。 倪文哲(2008)。以權重型極大-極小螞蟻系統求解旅行推銷員問題之研究(未出版之碩士論文)。國立台灣海洋大學河海工程學系,基隆市。 徐嘉吟與黃士滔(2008)。蟻群演算法於宅配業路線最佳化之研究,International Symposium of Quality Management,國立高雄應用科技大學。 陳士杰(2005)。螞蟻演算法基礎,國立聯合大學。取自http://sjchen.im.nuu.edu.tw/MachineLearning/final/Opt_AntAlgo.pdf 陳俊豪(2011)。支援RFID之個人化旅遊與推薦系統(未出版之碩士論文),國立屏東科技大學,屏東縣。 郭威廷(2011)。 一以本體論為基礎之GPS旅遊社群導覽系統(未出版之碩士論文),南台科技大學,臺南市。 徐瑋廷(2014)。地區性旅遊導覽APP架構設計-結合適地型服務與地區旅遊意象(未出版之碩士論文),銘傳大學,臺北市。 許儷玶(2009)。整合Google Map與Location-Based Workflow Service之平台建置與探討 (未出版之碩士論文),國立臺灣師範大學,臺北市。 張振松(2005)結合基因演算法和模擬退火法在機組排程決策之應用。資訊管理展望,7(2),113-135。 張書飄(2014)。即時旅遊建議系統分析與設計-基於情境感知(未出版之碩士論文),中國文化大學,臺北市。 黃若蘋(2007)。啟發式演算法於資料分群問題之比較(未出版之碩士論文),大同大學,臺北市。 程偉哲(2010)。時窗限制之彈性零工式生產排程研究─以二費洛蒙蟻群演算法求解(未出版之碩士論文),輔仁大學,新北市。 彭其捷與楊淑涵(2013)。那些APP好用的祕密:黏住使用者的魅力&UX好感度設計。臺北:博碩出版社。 資策會產業情報研究所(2015)。2015高科技產業十大趨勢。取自 http://mic.iii.org.tw/intelligence/pressroom/pop_pressFull.asp?sno=380&cred=2014/12/26 鄭仰廷(2011)。旅遊行程編輯系統之設計與實作-使用google maps(未出版之碩士論文),東海大學,臺中市。 鄭景堯(2011)。行動點對點環境下景點推薦之研究(未出版之碩士論文)。國立彰化師範大學,彰化市。 鄭志宏(2014)。螞蟻最佳化演算法。取自 http://jjcommons.csie.isu.edu.tw/research/download/ACO.pdf 熊偉傑(2011)。結合智慧型手機與雲端之及時旅遊資訊系統(未出版之碩士論文),南華大學,嘉義縣。 臺中市公共自行車網站(2015)。關於iBike。取自http://i.youbike.com.tw/cht/f31.html 蔡志強(2003)。以蟻群系統建立物流宅配最佳化配送路徑規畫(未出版之碩士論文),國立屏東科技大學,屏東縣。 潘邦積(2008)。一個基於強化學習之遺傳演算方法-- 以求解旅行銷售員問題為例(未出版之碩士論文),國立高雄第一科技大學,高雄市。 劉妍芝(2009)。應用蟻群演算法建構LSB替代矩陣之研究(未出版之碩士論文),銘傳大學,臺北市。 劉智偉(2009)。應用蟻群最佳化演算法規畫旅遊路線之研究:以南部三縣市為例(未出版之碩士論文),南台科技大學,臺南市。 劉昱德(2011)。比較三種萬用啟發式演算法於 TSP 問題之探討。工程科技與教育學刊,8(3),443-452。 數位行銷論壇(2015),虛實緊密結合的SoLoMo時代來臨,你準備好了嗎。取自http://emf.migosoft.com/case/case122.html 鍾文悰(2010)。探討無人管理租賃系統之使用滿意度─以台北市微笑單車為例(未出版之碩士論文),新竹市。 鐘聖雄(2009)。應用程式介面(API)。取自 http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?id=0000124511_X3U69O950XZLMH2L7S6BV#ixzz3dlzVEdAn 外文文獻 Anderson, J.C. & Gerbing, D.W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411-423. Ahn, T., Ryu, S. & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275. Asmar, D., Elshamli, A., & Areibi, S. (2005). A comparative assessment of ACO algorithms within a TSP environment. In DCDIS: 4th International Conference on Engineering Applications and Computational Algorithms, Guelph, Canada: Ontario. Bagozzi, R.P. & Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of Academy of Marketing Science, 16(1), 74-94. Batet, M., Moreno, A., Sanchez, D., Isern, D. & Valls, A. (2012). Turist@: Agent-based personalised recommendation of tourist activities. Expert Systems with Applications, 39(8), 7319-7329. Batista, T., Freire, F. & Silva, C.M. (2015). Vehicle environmental rating methodologies: Overview and application to light-duty vehicles. Renewable and Sustainable Energy Reviews, 45, 192-206. Bellmore, M. & Nemhauser, G. L. (1968). The traveling salesman problem: a survey. Operations Research, 16(3), 538-558. Blum, C. (2005). Ant colony optimization: Introduction and recent trends.Physics of Life reviews, 2(4), 353-373. Borras, J., Moreno, A. & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389. Brand, M., Masuda, M., Wehner, N., & Yu, X. H. (2010, June). Ant colony optimization algorithm for robot path planning. In Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 3, pp. V3-436). Qinhuangdao: IEEE. Brimicombe, A. J. (2002). GIS – Where are the frontiers now. In: Proceedings GIS 2002, Bahrain, 33-45. Brown, L.G. (1989). The Strategic and Tactical Implications of Convenience in Consumer Product Marketing. Journal of Consumer Marketing, 6(3), 13-19. Chen, R.F. & Hsiao, J.L. (2012). An investigation on physicians' acceptance of hospital information systems: A case study. International Journal of Medical Informatics, 81(12), 810-820. Chiang, H.S. & Huang, T.C. (2015). User-adapted travel planning system for personalized schedule Recommendation, Information Fusion, 21, 3-17. Chong, A.Y.L. (2013). Mobile Commerce Usage Activities: The Role of Demographic and Motivation Variables. Technological Forecasting & Social Change, 80(7), 1350-1359. Claes, R. & Holvoet, T. (2011, May). Ant colony optimization applied to route planning using link travel time predictions. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on (pp. 358-365). Shanghai: IEEE. Claes, R. & Holvoet, T. (2012). Cooperative ant colony optimization in traffic route calculations. In Advances on Practical Applications of Agents and Multi-Agent Systems (pp. 23-34). Springer Berlin Heidelberg. Colorni, A., Dorigo, M. & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142, pp. 134-142). Paris: Elsevier. Comrey, A.L. & Lee, H.B. (1992). A first course in factor analysis. New York: Academic Press. Davis, F.D.(1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. DeLone, W.H. & McLean, E.R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research. 3(1), 60-95. Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29-41. Dorigo, M. & Gambardella, L.M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation , 1(1), 53-66. Egea, J.M.O. & Gonzalez, M.V.R. (2011). Explaining Physicians' Acceptance of EHCR Systems: An Extension of TAM with Trust and Risk Factors. Computers in Human Behavior. 27(1), 319-332. eMarketer (2014). Smartphone Users Worldwide Will Total 1.75 Billion in 2014. Retrieved from http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536 Fornell, C. & Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences. 8(1), 156-166. Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J. & Riedl, J. (1999, July). Combining collaborative filtering with personal agents for better recommendations. In AAAI/IAAI (pp. 439-446). Hayduk, L.A. (1988). Structural equation modeling with LISREL: Essentials and advances. Jhu Press. Hair, J.F., Anderson, R.E., Tatham, R.L. & Black, W.C. (1988). Multivariate Data Analysis (5th Ed.), Prentice Hall, NJ. Holland, J.H. (1975). Adaptation In Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press. Second edition. (1992) Boston, MA: MIT Press. Hoffman, J. (2010). Cloud Computing: An Introduction to SQL Azure, TechNet Magazine. Retrieved from https://technet.microsoft.com/en-us/magazine/gg312148.aspx Hsu, H.H. & Chang, Y.Y. (2013). Extended TAM Model: Impacts of Convenience on Acceptance and Use of Moodle. Online Submission, 3(4), 211-218. Huang, Y. & Bian, L. (2009). Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Systems with Applications, 36(1), 933–943. Husain, W. & Dih, L.Y. (2012). A Framework of a Personalized Location-based Traveler Recommendation System in Mobile Application. International Journal of Multimedia and Ubiquitous Engineering, 7(3), 11-18. ISO/IEC (2008). Guidelines for API Standardization (ISO/IEC JTC 1 N 8557). Directives 5th Edition Version 3.0, 146-149. J.D. Power (2015). Customer Satisfaction with Feature-Rich Smartphones Increases as the Segment's Popularity Continues to Rise. Retrieved from http://www.jdpower.com/press-releases/2013-us-wireless-smartphone-satisfaction-study-volume-1-and-2013-us-wireless Kaiser, H.F. (1974). An Index of Factorial Simplicity. Psychometrika, 39(1), 31-36. Kalayci, E.G., Kalayci, T.E. & Birant, D. (2015). An ant colony optimisation approach for optimising SPARQL queries by reordering triple patterns. Information Systems, 50, 51-68. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. Kuo, M.H., Chen, L.C. & Liang, C.W. (2009). Building and evaluating a location-based service recommendation system with a preference adjustment mechanism. Expert Systems with Applications, 36(2), 3543-3554. Kumbharana, S.N. & Pandey G.M.(2013).A Comparative Study of ACO, GA and SA for Solving Travelling Salesman Problem. International Journal of Societal Applications of Computer Science, 2(2), 224-228. Kurata, Y. (2011). CT-planner2: More flexible and interactive assistance for day tour planning. ENTER 2011. Information and Communication Technologies in Tourism 2011. Landrum, H. & Prybutok, V. R. (2004). A service quality and success model for the information service industry. European Journal of Operational Research, 156(2), 628-642. Lee, C.S., Chang, Y.C. & Wang, M.H. (2009). Ontological recommendation multi-agent for Tainan City travel. Expert Systems with Applications, 36(3), 6740–6753. Lee, D.Y. & Lehto, M.R. (2013). User acceptance of YouTube for procedural learning: An extension of the Technology Acceptance Model. Computers & Education, 61, 193-208. Liao, C.H. & Tsou, C.W. (2009). User acceptance of computer-mediated communication: The SkypeOut case. Expert Systems with Applications, 36(3), 4595–4603. Lim , J.S., Al-Aali, A., Heinrichs, J.H. & Lim, K.S. (2013). Testing Alternative Models of Individuals' Social Media Involvement and Satisfaction. Computers in Human Behavior, 29(6), 2816-2828. Loh, S., Lorenzi, F., Saldana, R. & Licthnow, D. (2003). A tourism recommendation system based on collaboration and text analysis. Information Technology & Tourism, 6(3), 157–165. Luo, M.M. & Remus, W. (2014). Uses and gratifications and acceptance of Web-based information services: An integrated model. Computers in Human Behavior, 38, 281-295. Manouselis, N. & Costopoulou, C. (2007). Analysis and Classification of Multi-Criteria Recommender Systems. World Wide Web: Internet and Web Information Systems, 10(4), 415-441. Merkle, D. & Middendorf, M.(2002). Modelling the Dynamics of Ant Colony Optimization Algorithms. Evolutionary Computation, 10(3), 235-262. Miltgen, C.L., Popovič, A. & Oliveira, T.(2013). Determinants of end-user acceptance of biometrics: Integrating the 'Big 3' of technology acceptance with privacy context. Decision Support Systems, 56, 103-114. Moeng, C.H., & Wyngaard, J.C. (1988). Spectral analysis of large-eddy simulations of the convective boundary layer. Journal of the Atmospheric Sciences, 45(23), 3573-3587. Montaner, M., Lopez, B. & Rosa, J.D.L. (2003). A taxonomy of recommender agents on the internet. Artificial intelligence review, 19(4), 285-330. Montazemi, A.R. & Qahri-Saremi, H. (2015). Factors affecting adoption of online banking: A meta-analytic structural equation modeling study. Information & Management, 52(2), 210-226. Nunnally, J.C. (1978). Psychometric Theory. New York, McGraw-Hill Open Geospatial Consortium (2005). Open Location Services 1.1. Pai, F.Y. & Huang, K.I. (2011). Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technological Forecasting & Social Change, 78(4), 650-660. Qutaishat, F.T. (2012). Users' Perceptions towards Website Quality and Its Effect on Intention to Use E-government Services in Jordan. International Business Research, 6(1), 97. Resnick, P. & Varian, H.R. (1997). Recommender system. Communications of the ACM, 40(3), 56-58. Rho, M. J., Choi, I.Y. & Lee, J. (2014). Predictive factors of telemedicine serviceacceptance and behavioral intention of physicians. International Journal of Medical Informatics, 83(8), 559-571. Ricci, F. (2002). Travel recommendation systems. IEEE Intelligent Systems, 17(6), 55-57. Ricci, F.& Werthner, H. (2002). Case-based querying for travel planning recommendation. Information Technology and Tourism, 4(3-4), 215-226. Saeed, K.H.A. & Sue, A.H. (2008). Examining the Effects of Information System Characteristics and Perceived Usefulness on Post Adoption Usage of Information Systems. Information & Management, 45(6), 376-386. Samsioe, J. & Samsioe, A. (2002). Introduction to Location Based Services — Markets and Technologies. In Mobile Kommunikation (pp. 417-437). Springer Gabler Verlag. Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). NY, USA: ACM. Shiode, N., Li, C., Batty, M., Longley P. & Maguire D. (2004). The impact and penetration of location-based services, In Telegeoinformatics: Location-Based Computing and Services. London, UK: Centre for Advanced Spatial Analysis (UCL). Spielberger, C. D., & Gorsuch, R. L. (1983). State-Trait Anxiety Inventory for Adults: Manual and Sample: Manual, Instrument and Scoring Guide. Consulting Psychologists Press. Stutzle, T. & Hoos, H.H. (2000). MAX–MIN Ant System. Future Generation Computer Systems, 16(8), 889–914. Tang, J.T. & Chiang, C. (2009, June). Perceived innovativeness, perceived convenience and TAM: Effects on mobile knowledge management. In Multimedia and Ubiquitous Engineering, 2009. MUE'09. Third International Conference on (pp. 413-420). Qingdao: IEEE. Virrantaus, K., Markkula, J., Garmash, A., Terziyan, V., Alainen, J. V., Katanosov, A. & Tirri, H. (2001, December). Developing GIS-supported location-based services. In Web Information Systems Engineering, 2001. Proceedings of the Second International Conference on (Vol. 2, pp. 66-75). Kyoto: IEEE. Wallace, M., Maglogiannis, I., Karpouzis, K., Kormentzas, G. & Kollias, S. (2003). Intelligent one-stop-shop travel recommendations using an adaptive neural network and clustering of history. Information Technology & Tourism, 6(5), 181-193. Wallace, L.G. & Sheetz, S.D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51(2), 249-259. Yang, F. & Wang, Z. (2009). A mobile location-based information recommendation system based on GPS and WEB 2.0 services. WSEAS Transactions on Computers, 8(4), 725-734. Yang, W.S. & Hwang, S.Y. (2013). ITravel:A recommender system in mobile peer-to-peer environment. Journal of Systems and Software, 86(1), 12-20. Yoon, C. & Kim, S. (2007). Convenience and TAM in a ubiquitous computing environment: The case of wireless LAN. Electronic Commerce Research and Applications, 6(1), 102–112. Yu, Y., Kim, J., Shin, K. & Jo, G.S. (2009). Recommendation system using location-based ontology on wireless internet: An example of collective intelligence by using 'mashup' applications. Expert Systems with Applications, 36(9), 11675-11681. Yu, C. C., & Chang, H. P. (2009). Personalized location-based recommendation services for tour planning in mobile tourism applications (pp. 38-49). Springer Berlin Heidelberg. Zhou, X., Wu, S., Chen, G. &Shou, L. ( 2014). kNN processing with co-space distance in SoLoMo systems. Expert Systems with Applications. 41(16), 6967-6982.
摘要: Since the popularization of the two-day weekend and the improvement of public transit system, people begin to focus on leisure activities. The short-term domestic tourism activities are most prevalent. After the public bicycle system (iBike) import Taichung, prompting a convenience transportation system network and perfect for a tremendous impact on the tourism industry. With the flourish and development of smart phones and wireless networks. The functions of mobile application are gradually powerful, and the travel information and experience sharing can be achieved in an instant.Hence, utilizing positioning systems to give users more personalized information and services, the development of applications are heading towards location-based services (LBS), drawing the applications' functions closers to the needs of users. Ant Colony Optimization (ACO) is one of the metaheuristics algorithms, commonly used to solve the traveling salesman problem (TSP), so ACO is suitable for tourism recommendation and travel planning. As research areas for the Taichung, this study built a Personalized Location-based Mobile Tourism Application (PLMTA).Combined the hybrid filtering technology and ant colony optimization algorithms, made the performance of the system efficiently. And the tourism information based on Location-based service that allowed users to more effectively search travel information and arrange their trip. Also added the information of iBike for users as the transport reference let users feel the convenience of this system This study integrated the Technology Acceptance Model (TAM), the Information System Success Model (ISSM) and the perceived convenience brought forward a research model that discusses users' intention to use PLMTA. The study conducted questionnaires to collect information, and analyzed results by running hypothesis tests with Structural Equation Modeling (SEM). Results of this study showed that information quality, perceived ease of use, and perceived usefulness significantly affected intention to use PLMTA while information quality and perceived convenience influenced perceived usefulness. Also, Information quality, system quality, and perceived convenience had a significantly affect perceived ease of use and further affects intention to use.
自從周休二日逐漸普及且國內之交通建設與大眾運輸設置日漸完善,國人開始注重起休閒活動,使國內短期旅遊活動顯著成長。在公共自行車系統(iBike)導入臺中地區後,促使運輸系統網絡更佳便捷完善,對於觀光產業帶來巨大影響。 伴隨著智慧型手機與行動網路的蓬勃發展,手機應用程式的功能不斷的推陳出新,令旅遊資訊及經驗分享的獲取不再受到時空間限制,結合於適地性服務(Location-based Services, LBS),應用手機上的定位功能獲取地理位置,提供最貼切於使用者所在地的個人化服務。 蟻群最佳化演算法(Ant Colony Optimization, ACO)為一種萬用啟發式演算法,常用於解決旅行銷售員問題(Travelling Salesman Problem, TSP),適用於協助旅遊推薦系統之行程編排等功能。 本研究以臺中地區作為研究範疇,建置個人化行動旅遊行程推薦平台(Personalized Location-based Mobile Tourism Application, PLMTA),結合了混合式過濾技術與蟻群演算法,使系統之執行上較有效率;基於適地性服務所提供之旅遊資訊能夠讓使用者更快速地瀏覽資訊與編列遊程,加入iBike資訊供使用者作為遊程中代步工具之參考,令使用者感受到更多的便利性。 本研究整合了科技接受模式、資訊系統成功模型及知覺易用性,提出一研究模型以評估使用者對於PLMTA之接受意願,以問卷的方式進行資料蒐集、並使用結構方程模型進行結果分析驗證假說,結果顯示知覺易用性與知覺有用性對於使用意願有顯著影響,且資訊品質及知覺便利性會影響到使用者認為系統有用的程度,此外,資訊品質、系統品質及知覺便利性均會影響使用者於系統的操作,使用者感受到愈容易進行操作,進而對使用意願產生影響。
URI: http://hdl.handle.net/11455/92929
其他識別: U0005-1008201513211900
文章公開時間: 10000-01-01
Appears in Collections:資訊管理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.