Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92936
標題: Construction of Automatic Information System Based on Microarray Data of Scopolamine-Treated Rat in Hippocampus
建構自動化資訊分析系統在東莨菪鹼對大鼠腦海馬迴組織基因晶片之研究與應用
作者: 李冠緯
Guan-Wei Lee
關鍵字: Scopolamine
Hippocampus
Learning and Memory
T-test
Linear Regression
Ingenuity Pathway Analysis
東莨菪鹼
海馬迴
學習與記憶
T檢定
迴歸分析
IPA
引用: [1] W. B. Scoville and B. Milner, 'Loss of recent memory after bilateral hippocampal lesions,' J Neurol Neurosurg Psychiatry, vol. 20, pp. 11-21, Feb 1957. [2] S. Corkin, D. G. Amaral, R. G. Gonzalez, K. A. Johnson, and B. T. Hyman, 'H.M.'s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging,' The Journal of Neuroscience, vol. 17, pp. 3964-3979, 1997. [3] P. F. White, J. Tang, D. Song, J. E. Coleman, R. H. Wender, B. Ogunnaike, A. Sloninsky, R. Kapu, M. Shah, and T. Webb, 'Transdermal Scopolamine: An Alternative to Ondansetron and Droperidol for the Prevention of Postoperative and Postdischarge Emetic Symptoms,' Anesthesia and Analgesia, vol. 104, pp. 92-96, Jan 2007. [4] D. M. Jones, M. E. Jones, M. J. Lewis, and T. L. Spriggs, 'Drugs and Human Memory: Effects of Low Doses of Nitrazepam and Hyoscine on Retention,' British Journal of Clinical Pharmacology, vol. 7, pp. 479-83, May 1979. [5] X. Cui and G. A. Churchill, 'Statistical tests for differential expression in cDNA microarray experiments,' Genome Biol, vol. 4, p. 210, 2003. [6] R. E. Shiffler, 'Maximum Z Scores and Outliers,' American Statistician, vol. 42, pp. 79-80, Feb 1988. [7] A. E. Hoffman, T. Zheng, C. Yi, D. Leaderer, J. Weidhaas, F. Slack, Y. Zhang, T. Paranjape, and Y. Zhu, 'microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis,' Cancer Res, vol. 69, pp. 5970-7, Jul 15 2009. [8] M.-T. Hsieh, C.-L. Hsieh, L.-W. Lin, C.-R. Wu, and G. S. Huang, 'Differential gene expression of scopolamine-treated rat hippocampus-application of cDNA microarray technology,' Life Sciences, vol. 73, pp. 1007-1016, Jul 11 2003. [9] J. H. Jin, G. J. Li, J. Davis, D. Zhu, Y. Wang, C. Pan, and J. Zhang, 'Identification of novel proteins associated with both alpha-synuclein and DJ-1,' Molecular & Cellular Proteomics, vol. 6, pp. 845-859, May 2007. [10] J. S. Chandran, X. Lin, A. Zapata, A. Hoke, M. Shimoji, S. O. Moore, M. P. Galloway, F. M. Laird, P. C. Wong, D. L. Price, K. R. Bailey, J. N. Crawley, T. Shippenberg, and H. Cai, 'Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function,' Neurobiol Dis, vol. 29, pp. 505-14, Mar 2008. [11] S. N. Fedosov, N. U. Fedosova, E. Nexo, and T. E. Petersen, 'Conformational changes of transcobalamin induced by aquocobalamin binding. Mechanism of substitution of the cobalt-coordinated group in the bound ligand,' J Biol Chem, vol. 275, pp. 11791-8, Apr 21 2000. [12] C. E. Zhang, W. Wei, Y. H. Liu, J. H. Peng, Q. Tian, G. P. Liu, Y. Zhang, and J. Z. Wang, 'Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gamma-secretase and phosphorylation of amyloid precursor protein in rat brain,' Am J Pathol, vol. 174, pp. 1481-91, Apr 2009. [13] T. Abel, P. V. Nguyen, M. Barad, T. A. Deuel, E. R. Kandel, and R. Bourtchouladze, 'Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory.,' Cell, vol. 88, pp. 615-26, Mar 7 1997. [14] C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, 'Network organization of the human autophagy system.,' Nature, vol. 466, pp. 68-76, Jul 1 2010. [15] M. Peters, K. Mizuno, L. Ris, M. Angelo, E. Godaux, and K. P. Giese, 'Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus-dependent long-term memory.,' The Journal of Neuroscience, vol. 23, pp. 9752-60, 2003. [16] I. Liberzon, A. P. King, K. J. Ressler, L. M. Almli, P. Zhang, S. T. Ma, G. H. Cohen, M. B. Tamburrino, J. R. Calabrese, and S. Galea, 'Interaction of the ADRB2 Gene Polymorphism With Childhood Trauma in Predicting Adult Symptoms of Posttraumatic Stress Disorder,' JAMA Psychiatry, vol. 71, pp. 1174-82, Oct 2014. [17] K. Y. Chung, P. W. Day, G. Velez-Ruiz, R. K. Sunahara, and B. K. Kobilka, 'Identification of GPCR-interacting cytosolic proteins using HDL particles and mass spectrometry-based proteomic approach.,' Plos One, vol. 8, Jan 25 2013. [18] H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. C. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton, and P. A. Futreal, 'Mutations of the BRAF gene in human cancer,' Nature, vol. 417, pp. 949-54, Jun 27 2002. [19] A. P. Chen, M. Ohno, K. P. Giese, R. Kuhn, R. L. Chen, and A. J. Silva, 'Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory.,' J Neurosci Res, vol. 83, pp. 28-38, Jan 2006. [20] C. H. Shen, P. Yuan, R. Perez-Lorenzo, Y. Zhang, S. X. Lee, Y. Ou, J. M. Asara, L. C. Cantley, and B. Zheng, 'Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation.,' Mol Cell, vol. 52, pp. 161-72, Oct 24 2013. [21] X. Xin, Y. Cai, K. Matsumoto, and T. Agui, 'Endothelin-induced interleukin-6 production by rat aortic endothelial cells.,' Endocrinology, vol. 136, pp. 132-7, Jan 1995. [22] L. L. Dugan, S. S. Ali, G. Shekhtman, A. J. Roberts, J. Lucero, K. L. Quick, and M. M. Behrens, 'IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase.,' Plos One, vol. 4, May 13 2009. [23] R. M. Hu and E. R. Levin, 'Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor.,' Journal of Clinical Investigation, vol. 93, pp. 1820-1827, Apr 1994. [24] A. Veyrac, A. Gros, E. Bruel-Jungerman, C. Rochefort, F. B. Kleine Borgmann, S. Jessberger, and S. Laroche, 'Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning.,' Proc Natl Acad Sci U S A, vol. 110, pp. 7062-7, Apr 23 2013. [25] L. J. Rygh, R. Suzuki, W. Rahman, Y. Wong, J. L. Vonsy, H. Sandhu, M. Webber, S. Hunt, and A. H. Dickenson, 'Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neurons.,' Eur J Neurosci, vol. 24, pp. 761-72, Aug 2006. [26] E. Knapska, V. Lioudyno, A. Kiryk, M. Mikosz, T. Gorkiewicz, P. Michaluk, M. Gawlak, M. Chaturvedi, G. Mochol, M. Balcerzyk, D. K. Wojcik, G. M. Wilczynski, and L. Kaczmarek, 'Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala.,' J Neurosci, vol. 33, pp. 14591-600, Sep 4 2013. [27] A. Bagnato, L. Rosano, F. Spinella, V. Di Castro, R. Tecce, and P. G. Natali, 'Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression.,' Cancer Res, vol. 64, pp. 1436-43, Feb 15 2004. [28] R. Paylor, R. S. Johnson, V. Papaioannou, B. M. Spiegelman, and J. M. Wehner, 'Behavioral assessment of c-fos mutant mice.,' Brain Res, vol. 651, pp. 275-82, Jul 18 1994. [29] B. Zhu and J. Herbert, 'Behavioural, autonomic and endocrine responses associated with C-fos expression in the forebrain and brainstem after intracerebroventricular infusions of endothelins.,' Neuroscience, vol. 71, pp. 1049-62, Apr 1996. [30] S. E. Lutz, Y. Zhao, M. Gulinello, S. C. Lee, C. S. Raine, and C. F. Brosnan, 'Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation.,' J Neurosci, vol. 29, pp. 7743-52, Jun 17 2009. [31] C. S. Chan, E. J. Weeber, S. Kurup, J. D. Sweatt, and R. L. Davis, 'Integrin requirement for hippocampal synaptic plasticity and spatial memory.,' J Neurosci, vol. 23, pp. 7107-16, Aug 6 2003. [32] M. S. Warren, W. D. Bradley, S. L. Gourley, Y.-C. Lin, M. A. Simpson, L. F. Reichardt, C. A. Greer, and J. R. T. J. Koleske, 'Integrin β1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior.,' Journal of Neuroscience, vol. 32, pp. 2824-2834, 2012. [33] M. Singh and C. Su, 'Progesterone, brain-derived neurotrophic factor and neuroprotection,' neuroscience, vol. 239, pp. 84-91, Jun 3 2013. [34] S. Usuki, T. Saitoh, N. Suzuki, C. Kitada, K. Goto, and T. Masaki, 'Endothelin-1 and endothelin-3 stimulate ovarian steroidogenesis.,' J Cardiovasc Pharmacol, vol. 17 Suppl 7, pp. S256-9, 1991. [35] J. C. Carroll, E. R. Rosario, L. Chang, F. Z. Stanczyk, S. Oddo, F. M. LaFerla, and C. J. Pike, 'Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice.,' J Neurosci, vol. 27, pp. 13357-65, Nov 28 2007. [36] F. P. Monnet and T. Maurice, 'The sigma(1) protein as a target for the non-genomic effects of neuro(active)steroids: Molecular, physiological, and behavioral aspects,' Journal of Pharmacological Sciences, vol. 100, pp. 93-118, Feb 2006. [37] N. L. Day, C. L. Floyd, T. L. D'Alessandro, W. J. Hubbard, and I. H. Chaudry, '17β-Estradiol Confers Protection after Traumatic Brain Injury in the Rat and Involves Activation of G Protein-Coupled Estrogen Receptor 1,' J Neurotrauma, vol. 30, pp. 1531-41, Sep 1 2013. [38] C. C. Chen, J. W. Shen, N. C. Chung, M. Y. Min, S. J. Cheng, and I. Y. Liu, 'Retrieval of Context-Associated Memory is Dependent on the Ca(v)3.2 T-Type Calcium Channel,' Plos One, vol. 7, Jan 3 2012. [39] K. Yokokawa, M. Kohno, M. Johchi, T. Horio, K. Murakawa, K. Yasunari, M. Yanagisawa, and T. Takeda, 'Effect of endothelin receptor antagonist, BQ-123, on Ca2+ signaling in cultured rat mesangial cells.,' Life Sci, vol. 53, pp. 1631-41, 1993.
摘要: Scopolamine is one of the competitive antagonist. It is the secondary metabolites from Datura. Scopolamine is being used to treat motive sickness. The side effects of this drug including dry mouth, muscle weakness, etc. People usually don't realize that functions of learning and memory may be affected by overdosing scopolamine. Hippocampus is an important component of the brain. It associate with the functions of learning and memory. Short-term memory will be consolidated into long-term memory by hippocampus. New memory cannot be created by brain when hippocampus damaged. In this study, microarray data of gene expression from scopolamine-treated rat is analyzed by statistical methods which include T-test and Linear Regression. An information system was created to analyze microarray data automatically. Six target genes, PRSS22, ETF1, TCN1, PRKAG1, MUTYH and EDN3, were selected from 9,600 genes on the array. A genetic pathway was created and target genes were studied by Ingenuity Pathway Analysis software. Finally, these genes analyzed from IPA, ETF1, TCN1, PRKAG1 and EDN3 are associated with the functions of learning and memory in hippocampus.
東莨菪鹼(Scopolamine)是一種從曼陀羅花中提煉的藥物,作為一種乙醯膽鹼的拮抗劑使用,目前主要被用來治療動暈症狀,它能夠阻斷運動神經的傳導,對於暈車藥來說效果相當不錯。然而當東莨菪鹼藥物的劑量加大,其對於影響腦部學習與記憶功能的副作用會增加。 海馬迴(Hippocampus)是位於大腦顳葉中的一個區塊,主要負責將短期記憶組織後作為長期記憶來儲存,當海馬迴受損後便無法在增加新的記憶,故本論文旨在探討東莨菪鹼藥物對於海馬迴中的基因,是否會造成學習與記憶功能的障礙。 本論文使用大鼠服用東莨菪鹼藥物實驗的海馬迴微陣列晶片資料樣本,其中包含9600組基因表現量,使用T檢定來驗證假說,確定實驗前後大鼠海馬迴的基因表現量具有顯著差異,使用迴歸分析並計算殘差值,利用標準化殘差方法篩選出6個標靶基因,並利用IPA軟體來分析標靶基因之間的關係以及建立途徑網路,加以探討這些標靶基因對於學習與記憶功能的關聯性與影響。最後建置Matlab系統自動化分析,增加同類型資料研究效率。本論文篩選出PRSS22、ETF1、TCN1、PRKAG1、MUTYH以及EDN3共六個標靶基因,而其中ETF1、TCN1、PRKAG1與EDN3確實與腦部的學習與記憶功能有關聯,未來經過生物實驗驗證後,這些標靶基因便能作為生醫領域相關研究的依據,以提升對於學習記憶等相關功能的研究效率與成果。
URI: http://hdl.handle.net/11455/92936
其他識別: U0005-1707201512241900
文章公開時間: 2018-07-23
Appears in Collections:資訊管理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.