Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92996
標題: 攝入咖啡因對模擬籃球比賽體能與 技術表現之影響
The effect of caffeine ingestion on physical fitness and skill performance in the simulated basketball game
作者: Yu-Hsien Lai
賴育仙
關鍵字: Caffeine
Similar game
Basketball special skill
Goal percentage
Rating of perceived exertion
咖啡因
模擬比賽
籃球技術專項體能
投籃命中率
運動自覺量表
引用: 中文文獻: 邱名穗,(2012 年 6 月 28 日)。補充支鏈胺基酸與精胺酸對連續兩天 籃球比賽體能與技術表現之影響。國立臺灣體育運動大學碩士學位論 文。 英文文獻: Andrew, F., Ajmol, A., & Nicholas, G. (2009). Caffeine enhances cognitive function and skill performance during simulated soccer activity. International Journal of Sport Nutrition and Exercise Metabolism, 19, 410-423. Astorino, T. A., Rohmann, R. L., & Firth, K. (2008). Effect of caffeine ingestion on one-repetition maximum muscular strength. European Journal of Applied Physiology, 102(2), 127-132. doi: 10.1007/s00421-007-0557-x Astorino, T. A., Terzi, M. N., Roberson, D. W., & Burnett, T. R. (2011). Effect of Caffeine Intake on Pain Perception During High-Intensity Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 21, 27-32. Astorino, T. A., Cottrell, T., Lozano, A. T., Aburto-Pratt, K., & Duhon, J. (2011). Increases in cycling performance in response to caffeine ingestion are repeatable. Nutrition Research, 32(2), 78-84. doi:10.1016/j.nutres.2011.12.001 Atkinson, G. (2002). Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multi-factorial designs. Physical Therapy in Sport, 3(4), 191-203. doi:10.1054/ptsp.2002.0123 Bell, D. G., Jacobs, I., & Ellerington, K. (2001). Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Medicine and Science in Sports and Exercise, 33(8), 1399–1403. Bell, D. G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93, 1227–1234. doi: 10.1152/japplphysiol.00187.2002 Berglund, B., & Hemmingsson, P. (1982). Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiers. International Journal of Sports Medicine, 3, 234–236. doi: 10.1055/s-2008-1026094 Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian journal of rehabilitation medicine, 2 (2), 92–98. Cole, K. J., Costill, D. L.,Starling, R. D.,Goodpaster, B. H.,Trappe, S. W., & Fink, W. J. (1996). Effect of caffeine on perception of effort and subsequent work production. International Journal of Sport Nutrition, 6,14-23. Costill, D. L., Dalsky, G. P., & Fink, W, J. (1978). Effect of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports and Exercise, 10, 155-158. Cox, G. R., Ben, D., Paul, G. M., Megan, E. A., Clinton, R. B., Theodore, A. M., David, T. M., & Angela, M. (2002). Effect of different protocols of caffeine intake on metabolism and endurance performance. Journal of Applied Physiology, 93, 990–999. doi: 10.1152/japplphysiol.00249.2002 Del, C. J., Estevez, E., & Mora-Rodriguez, R. (2008). Caffeine Effects on Short-Term Performance during Prolonged Exercise in the Heat. Medicine and Science in Sports and Exercise, 40(4), 744–751. doi: 10.1249/MSS.0b013e3181621336 Desbrow, B., Biddulph, C., Devlin, B., Grant, G.D., Anoopkumar-Dukie, S., & Leveritt, M.D. (2012). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115-20. doi:10.1080/02640414.2011.632431 Doering, T. M., Fell, J. W., Leveritt, M. D., Desbrow, B., & Shing, C. M. (2014). The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance. International Journal of Sport Nutrition and Exercise Metabolism, 24(1), 90-97. doi: 10.1123/ijsnem.2013-0103 Duvnjak-Zaknich, D. M., Dawson, B. T., Wallman, K. E., & Henry, G. (2011). Effect of caffeine on reactive agility time when fresh and fatigued. Medicine and Science in Sports and Exercise, 43(8), 1523–1530. doi:10.1249/MSS.0b013e31821048ab Fisher, S. M., McMurray, R. G., Berry, M., Mar, M. H., & Forsythe, W. A. (1986). Influence of caffeine on exercise performance in habitual caffeine users. International Journal of Sports Medicine, 07(5), 276-280. doi:10.1055/s-2008-1025774 Fredholm, B. B. (1995). Adenosine, adenosine receptors and the actions of caffeine. Pharmacology & Toxicology, 76(2), 93–101. doi: 10.1111/j.1600-0773.1995.tb00111.x Ganio, M. S., Johnson, C. E., Jennifer, F. K., Jeffrey, M. A., Douglas, J. C., Carl ,M. M.,...Lawrence, E. A. (2011). Effect of ambient temperature on caffeine ergogenicity during endurance exercise. European Journal of Applied Physiology, 111(6), 1135-46. doi: 10.1007/s00421-010-1734-x Graham, T. E., & Spriet, L. L. (1991). Performance and metabolic responses to a high caffeine dose during prolonged exercise. Journal of Applied Physiology, 71, 2292-2298. Graham, T. E., & Spriet, L. (1995). Metabolic catecholamine and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78(3), 867–874. Graham, T. E., Hibbert, E., & Sathasivam, P. (1998). Metabolic and exercise endurance effects of coffee and caffeine ingestion. Journal of Applied Physiology, 85(3), 883–889. Graham, T. E., Sathasivam, P., Rowland, M., Marko, N., Greer, F., Battram, D. (2001). Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Canadian Journal of Physiology and Pharmacology, 79(7), 559-565. doi: 10.1139/cjpp-79-7-559 Greer, F., McLean, C., & Graham, T. E.(1998). Caffeine, performance, and metabolism during repeated Wingate exercise tests. Journal of Applied Physiology, 85(4), 1502 – 1508. Hodgson, A. B., Randell, R. K., & Jeukendrup, A. E. (2013). The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE, 8(4), e59561. doi: 10.1371/journal.pone.0059561 Hogervorst, E., Bandelow, S., Schmitt, J., Jentjens, R., Oliveira, M., Allrgove, J.,...Gleeson, M. (2008). Caffeine improves physical and cognitive performance during exhaustive exercise. Medicine and Science in Sports and Exercise, 40(10), 1841–1851. doi: 10.1249/MSS.0b013e31817bb8b7 Irwin, C., Desbrow, B., Ellis, A., O'Keeffe, K., Grant, G., & Leveritt, M. (2011). Caffeine withdrawal and high-intensity endurance cycling performance. Journal of Sports Sciences, 29(5), 509-515. doi:10.1080/02640414.2010.541480. Jenkinson, M. D. D., & Allison, J. H. M. D. (2008). Supplements and sports. American Family Physician, 78(9), 1039-1046. Jordan, J. B., Richard, S. F., & Jennifer, L. C. (2012). Caffeine and sprint performance in habitual and caffeine Naive participants. International Journal of Exercise science, 5(1), 50-59. Keijzers, G.B., De Galan, B.E., Tack, C.J., & Smits, P. (2002). Caffeine can decrease insulin sensitivity in humans. Diabetes Care, 25(2), 364-9. doi: 10.2337/diacare.25.2.364 Kovacs, E. M. R., Jos, H. C. H. S., & Fred, B. (1998). Effect of caffeinated drinks on substrate metabolism caffeine excretion and performance. Journal of Applied Physiology, 85(2), 709–715. Lamina, S., & Musa, D. I. (2009). Ergogenic effect of varied doses of coffee-caffeine on maximal aerobic power of young African subjects. African Health Sciences, 9(4), 270-274. Machado, M., Welton, D. A., Andre, L. M. T., Pedro, G. A., Juliano, G. B., & Anthony, C. H. (2009). Effect of a single dose of caffeine supplementation and intermittent-interval exercise on muscle damage markers in soccer players. Journal of Exercise Science and Fitness, 7(2), 91–97. doi:10.1016/S1728-869X(09)60011-3 Malek, M. H., Housh, T. J., Coburn, J. W., Beck, T. W., Schmidt, R. J., Housh, D.J., & Johnson, G.O. (2006). Effects of eight weeks of caffeine supplementation and endurance training on aerobic fitness and body composition. Journal Strength Conditioning Research, 20(4), 751–755. doi: 10.1519/R-18345.1 Pasman, W., Vanbaak, M., Jeukendrup, A., & Dehaan, A. (1995). The effect of different dosages of caffeine on endurance performance time. International Journal of Sports Medicine, 16(4), 225–230. doi: 10.1055/s-2007-972996 Paton, C., Lowe, D., T., & Irvine, A. (2010). Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. European Journal of Applied Physiology, 110(6), 1243-1250. doi: 10.1007/s00421-010-1620-6 Paton, C., Costa, V., & Guglielmo, L. (2015). Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. Journal of Sports Medicine, 33(10), 1076-83. doi: 10.1080/02640414.2014.984752 Plaskett, C. J., & Cafarelli, E.. (2001). Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. Journal of Applied Physiology, 91, 1535–1544. Santos, R., Kiss, M., Silva-Cavalcante, M. D., Correia-Oliveira, C. R., & Bertuzzi, R. (2013). Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PLoS ONE, 8(9), e75399. doi: 10.1371/journal.pone.0075399 Santos, V. G. F., Vander, R. F. S., Leandro, J. C. F., Jose, W., Almeida, J., Romulo, B., Maria, A. P. D. M. K, & Adriano, E. L. (2014). Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients, 6, 637-649. doi: 10.3390/nu6020637 Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine and Science in Sports and Exercise, 38(3), 578-585. Silva-Cavalcante, M. D., Correia-Oliveira, C. R., Santos, R. A., Lopes-Silva, J. P., & Lima, H. M. (2013). Caffeine increases anaerobic work and restores cycling performance following a protocol designed to lower endogenous carbohydrate availability. PLoS ONE, 8(8), e72025. doi: 10.1371/journal.pone.0072025 Stuart, G. R., Hopkins, W. G., Cook, C., & Cairns, S. P. (2005). Multiple effects of caffeine on simulated high-intensity team-sport performance. Medicine and Science in Sports and Exercise, 37(11), 1998-2005. doi: 10.1249/01.mss.0000177216.21847.8a Tarnopolsky, M. A., Atkinson, S. A., Macdougall, J. D., Sale, D. G., & Sutton, S. A. (1989). Physiological responses to caffeine during endurance running in habitual caffeine user. Medicine and Science in Sports and Exercise, 21(4), 418-424. doi: 10.1249/00005768-198908000-00013 Thong, F. S., Derave, W., Kiens, B., Graham, T. E., Urso, B., Wojtaszewski, J. F., Hansen, B. F., Richter, E. A. (2002). Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes, 51, 583–590. doi: 10.2337/diabetes.51.3.583 Van, S. M. H., & Graham, T. E. (1998). Effect of caffeine on metabolism, exercise endurance and catecholamine responses after withdrawal. Journal of Applied Physiology, 85(4), 1493–1501. Williams, J. H., Signorile, J. F., Barnes, W. S., & Henrich, T. W. (1988). Caffeine, maximal power output and fatigue. British Journal of Sports Medicine, 22(4), 132-134. doi: 10.1136/bjsm.22.4.132
摘要: 前言:咖啡因已被證實可以促進耐力性運動表現、延長衰竭時間、增加 注意力,但是對於間歇性高強度運動技術表現的研究仍屬缺乏。本研究的研 究目的為探討運動前補充咖啡因對模擬籃球比賽之籃球技術專項體能表現、 投籃命中率、反動作跳高度及技術測驗的影響。方法:11位甲二級大學男子 籃球員,採雙盲隨機交叉設計,每次測試為期一天。於運動前1小時補充每 公斤體重6毫克的咖啡因或安慰劑(placebo測試)。模擬籃球比賽分為上、下 半場各20分鐘,中場休息15分鐘,上、下半場各2節,每節10分鐘,每節包 括連續10次跳、四線折返衝刺、底線衝刺跳投、Z字防守後跳投、罰球10顆、 禁區組合運動、全場組合運動、5方向投籃及6次邊線折返跑。記錄各項時間 與投籃命中率,以評估體能表現與投籃技術表現。並於運動前、中場休息及 運動後進行體能測驗,包括反動作跳測量與技術測驗(包括球員運球、過人、 傳球、上籃、投籃等專項技術)。運動前與每節運動後詢問自覺量表。於正 式測驗進食前、運動前跟運動後採集肘靜脈血液樣本,分析血乳酸、血糖、 游離脂肪酸、胰島素、甘油、血比容以及心跳率、運動自覺量表的差異。結 果:咖啡因測試與安慰劑測試的籃球技術專項完成時間、技術測驗完成時間、 投籃命中率與反動作跳高度上並沒有顯著差異(P>0.05)。但於全場技術專項 完成時間與技術測驗完成時間有優於安慰劑的趨勢(P=0.058 and P=0.054)。 咖啡因測試的血乳酸於模擬比賽前後皆與安慰劑測試達顯著差異(P=0.049 and P=0.003),咖啡因測試的血漿中甘油和胰島素均在模擬比賽後與安慰劑 測試達顯著差異(P=0.011 and P=0.017)兩組試驗間心跳率於第三節達顯著差 異(P<0.001)。結論:模擬籃球比賽前1小時攝取每公斤體重6毫克咖啡因並不 影響籃球技術專項表現。
Introduction: Ingestion of caffeine has been shown to improve endurance exercise performance, extend the time to exhaustion and increase attention level, however intermittent high-intensity exercise performance research is still lacking. The purpose of this study is to investigate the effect of caffeine ingestion before a simulation basketball game on basketball fitness & skill performance. Methods: eleven male Division II university basketball players were recruited to participate in a double-blind randomized crossover design study. The subjects were asked to consume either 6mg/kg caffeine or placebo 1 hour before the simulated basketball game. The simulated basketball game consisted of 20 min in each half and a 15-min rest in between. Each half contained 2*10-min quarter with a 2-min rest in between. Each quarter includes 10 consecutive jumps, ladder suicide sprint, baseline jump shots, foul-line jump shots, free-throw shooting, key combination, full court combination, 5 directions shooting, and 6 shuttle run. The time and shooting percentage were recorded in order to assess the physical performance and shooting skill. A counter movement jump test was performed before and after the simulated game, as well as at the half-time. A skill test, including dribbling, extraordinary, passing, layups and shooting will be performed before and after the game and the time required for the test was recorded. The rating of perceived exertion was recorded before exercise and after each exercise session. Blood samples was collected from the antecubital vein at fasting, before and after the simulated game. The plasma concentrations of lactate, glucose, free fatty acids, insulin and glycerol were measured. The difference hematocrit, heart rate and rating of perceived exertion were analyzed. Results: there were no significant difference between caffeine and placebo trial in basketball special skill and skills challenge finished time, shooting performance and counter movement jump height (p>0.05). However, there was a trend showed caffeine trial performed better in basketball special skill and skills challenge finished time than placebo (P = 0.058 & 0.054, respectively). Plasma lactate concentration was significant higher in caffeine than in placebo before and after simulation game (P=0.049 & P=0.003, respectively). Plasma glycerol and insulin concentration were significant higher in caffeine than in placebo after simulation game (P = 0.011 & P = 0.017, respectively). Heart rate between two trials were significant different in the third quarter (P<0.001). Conclusion: Ingestion of 6mg/kg body mass caffeine 1 hour before the simulation basketball game does not affect basketball fitness & skill performance.
URI: http://hdl.handle.net/11455/92996
文章公開時間: 2015-07-28
Appears in Collections:運動與健康管理研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.