Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9305
標題: 應用於無線區域網路802.11a,24GHz與60GHz之射頻發射器子電路設計
Transmitter Sub-block Circuits Design for WLAN 802.11a, 24GHz and 60GHz Applications
作者: 吳兼百
Wu, Chien-Pai
關鍵字: 射頻發射器
transmitter
功率放大器
注入鎖定除頻器
power amplifier
injection-locked frequency divider
出版社: 電機工程學系所
引用: [1] B. Razavi, ‘‘RF Microelectronics,” Prentice Hall, 2008. [2] 吳明蔚, ‘‘應用於無線區域網路802.11a與60GHz毫米波之功率放大器設計,” 國立中興大學電機工程學系碩士論文, July 2011. [3] Y.H. Chuang, S.H. Lee, R.H. Yen, SL. Jang, J.F. Lee, and M.H. Juang, ‘‘A Wide Locking Range and Low Voltage CMOS Direct Injection-Locked Frequency Divider,’’ IEEE Microwave and Wireless Components Letter, vol. 16, no. 5, pp.299-301, May 2006. [4] 許祐豪, ‘‘應用於防撞雷達系統之頻率合成器,’’ 國立中興大學電機工程學系碩士論文, October 2012. [5] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, ‘‘A 30.5 dBm 48% PAE CMOS class-E PA with Integrated Balun for RF Applications,’’ IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1755-1762, August 2008. [6] Y.Y. Woo, Y.Y. Tang, and B. Kim, ‘‘Analysis and Experiments for High-efficiency Class-F and Inverse Class-F Power Amplifiers,’’ IEEE microwave and wireless components letter, vol. 54, no. 5, pp. 1969-1974, May 2006. [7] X. Cui, P. Roblin, J. Lee, and Y.G. Kim, ‘‘A 3.5 GHz CMOS Doherty Power Amplifier with Integrated Diode Linearizer Targeted for WiMax Applications,’’ Proceedings of the Midwest Symposium on Circuits and Systems, pp. 465-468, 2007. [8] Y.-J. E. Chen, C.-Y. Liu, T.-N. Luo, and D. Heo, ‘‘A High-Efficient CMOS RF Power Amplifier With Automatic Adaptive Bias Control,’’ IEEE Microwave and Wireless Components Letter, vol. 16, no. 11, pp. 615-617, November 2006. [9] H. Chireix, ‘‘High Power Outphasing modulation,’’ Proc. IREI, vol. 23, no. 11, pp. 1370-1392, November 1935. [10] S. Lee and S. Nam, ‘‘A CMOS Outphasing Power Amplifier with Integrated Single-end Chireix Combiner,’’ IEEE Transactions on Circuits System II, vol. 57, no. 6, pp. 411-415, June 2010. [11] L.R Kahn, ‘‘Single Sideband Transmission by Envelope Elimination and Restoration,’’ Proc. IREI, vol. 40, pp. 803-806, July 1952. [12] J.K. Cavers, ‘‘Adaption Behavior of Feedforward Amplifier Linearizer,’’ IEEE Transactions on Vehicular Technology, vol. 44, no. 1, pp. 31-40, 1995. [13] A. Bateman and D.M. Haines, ‘‘Direct Conversion Transceiver Design for Compact Low Cost Portable Mobile Radio Terminals,’’ 39th IEEE Transactions on Vehicular Technology Conference, vol. 1, no. 9, pp. 57-62, 1989. [14] A. Katz, R. Gray, and J. Matsuoka, ‘‘A High Efficiency & Linear Integrated PA for Ka/Q Bands,’’ IEEE International Microwave Symposium, TH1B-2, Long Beach, CA, 2005. [15] Y. S. Noh and C.S. Park, ‘‘PCS/W-CDMA Dual-band MMIC Power Amplifier with a Newly Proposed Linearizing Bias Circuits,’’ IEEE Journal of Solid-State Circuits, vol. 37, no. 9, pp. 1096-1099, September 2002. [16] S. Ko and J. Lin, ‘‘A Novel Linearizer and Fully Integrated CMOS Power Amplifier,’’ Proceedings of Asia-Pacific Microwave Conference, pp. 144-147, 2006. [17] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, ‘‘A Low Distortion and High Efficiency HBT MMIC Power Amplifier with a Novel Linearization Technique for 7d4 DQPSK Modulation,’’ IEEE GaAs IC Symposium Technology Digest, pp. 45–48, 1997. [18] W. H. Doherty, ‘‘A New High Efficiency Power Amplifier for Modulated Waves, ’’ Proc. IREI, vol. 24, no. 9, pp. 1163-1182, September 1936. [19] S. C. Cripps, ‘‘RF Power Amplifiers for Wireless Communications,’’ Artech House, 2006. [20] P. Colantonio, F. Giannini, and E. Limiti, ‘‘High Efficiency RF and Microwave Solid State Power Amplifiers,’’ Wiley, 2009. [21] T. LaRocca, Y.C. Liu, and M.C. Chang, ‘‘60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design,’’ IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1425-1435, May 2009. [22] T. LaRocca and M.C. Chang, ‘‘60GHz CMOS Differential and Transformer-Coupled Power Amplifier for Compact Design,’’ IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 65–68, June 2008, [23] C. K. Liang and B. Razavi, ‘‘Transmitter Linearization by Beamforming,’’ IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1956-1969, September 2011. [24] D. Chowdhury, P. Reynaert, and A. Niknejad, “A 60 GHz 1 V +12.3 dBm Transformer-coupled Wideband PA in 90 nm CMOS,” IEEE International Solid-State Circuits Conference Digest Technology Papers, pp. 560–635, February 2008. [25] C.Y. Law and A.V. Pham, “A High-gain 60GHz Power Amplifier with 20 dBm Output Power in 90nm CMOS Process,” IEEE Microwave Theory and Techniques, vol. 57, no. 57, pp. 1637-1645, July 2009. [26] M. Nick and A. Mortazawi, “Adaptive Input-Power Distribution in Doherty Power Amplifiers for Linearity and Efficiency Enhancement, ” IEEE Microwave Theory and Techniques, vol. 58, no. 51, pp. 2764-2771, November 2010. [27] H. Wang, G.S. Dow, M. Aust, K.W. Chang, R. Lai, M. Biedenbender, D.C. Streit, and B.R. Allen, “Novel W-band Monolithic Push-pull Power Amplifier,” IEEE Journal of Solid-State Circuits, vol. 30, no. 10, pp. 1055-1061, October 1995. [28] S. Shim and S. Hong, “A CMOS Power Amplifier With Integrated-Passive-Device Spiral-Shaped Directional Coupler for Mobile UHF RFID Reader,” IEEE Microwave Theory and Techniques, vol. 59, no. 11, pp. 2888-2897, November 2011. [29] G. Liu, P. Haldi, T.J. K. Liu, and A. M. Niknejad ‘‘Fully integrated CMOS Power Amplifier with Efficiency Enhancement at Power Back-off,’’ IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 600-609, March 2008. [30] M. Tiebout, ‘‘A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Low-Power Frequency Divider,’’ IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, July 2004. [31] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Transactions on Microwave Theory Technology, vol. 56, no. 11, pp. 2409–2415, November 2008. [32] S. Rong, A. W.L. Ng, and H. C. Luong, “0.9mW 7GHz and 1.6mW 60GHz Frequency Dividers with Locking-Range Enhancement in 0.13μm CMOS,” International Solid-State Circuits Conferencr Digest Technology Papers, pp. 96-97, February 2009. [33] J. Yin and H. C. Luong, “A 0.8V 1.9mW 53.7-to-72.0GHz Self-Frequency-Tracking Injection-Locked Frequency Divider,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 17-19 June 2012. [34] L.H. Lu and J.C. Chien, “A Wide-Band CMOS Injection-Locked Ring Oscillator,” IEEE Microwave and Wireless Components Letter, vol. 15, no. 10, pp.676-678, October 2005. [35] B. Razavi, “A Study of Injection Locking and Pulling in Oscillators,’’ IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, September 2004. [36] 張瑞廷, ‘‘CMOS/MEMS 射頻功率放大器與四階諧波混波器之研製,’’ 國立成功大學電機工程學系微電子工程研究所碩士論文, July 2009. [37] 傅冠霖, ‘‘LC-Tank振盪器相位雜訊與消耗功率之權衡與寬頻注入鎖定除頻器,’’ 國立中興大學電機工程學系碩士論文, January 2011. [38] D. M. Pozar, “Microwave Engineering 3/e,” Willy, 2005. [39] G. Gonzalez, “Microwave Transistor Amplifier Analysis and Design,” Prentice Hall, 2010. [40] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Applications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 10, pp. 1055-1061, October 1995. [41] S.H.L. Tu, S.S.H. Chen, “5.25GHz CMOS Cascode Power Amplifier for 802.11a Wireless Local Area Network,” Journal of IET Microwaves, Antennas and Propagation, vol.2, Issue 6, pp. 627-634, September 2008 [42] B. Razavi, ‘‘Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001. [43] G. Massobrio and P. Antognetti, “Semiconductor device modeling with SPICE,” McGraw-Hill, 1993. [44] P.S. Chi, Z.M. Tsai, J.L. Kuo, K.Y. Lin, and H. Wang, ‘‘An X-band, 23.8-dBm Fully Integrated Power Amplifier with 25.8% PAE in 0.18-μm CMOS Technology,” European Microwave Integrated Circuits Conference (EuMIC), pp. 436-439, 2010. [45] 林育聖, ‘‘60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,’’ 國立成功大學電機工程學系微電子工程研究所碩士論文, July 2009. [46] “60 GHz Wireless Communications, ” http://windowsil.org/2008/03/13/60-ghz- wireless-communications/ [47] P.Smulders, “Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future Directions,” IEEE Communications Magazine, pp. 140-147, January 2002. [48] http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave. apps.html [49] “砷化鎵產業發展現況,亞東證劵投資顧問有限公司,” http://www.osc.com.tw/study1/monthly/9610/9610_GaAs.pdf [50] WIN Semiconductors Co., “PP15-20 0.15μm InGaAs pHEMT power device layout design manual,” Ver.1.3.1, May, 2012. [51] X. Luo, T. Liu, Y. Ye, L. Cen, Y.g Zhao, and C. Sun, ‘‘460MHz Three-Stage Doherty Power Amplifier with Uneven Power Driving,” International Conference on Electronics, Communications and Control (ICECC), pp.2404-2407, 2011. [52] H. Asada, K. Matsushita, K. Bunsen, K. Okada, and A. Matsuzawa, “A 60 GHz CMOS Power Amplifier Using Capacitive Cross-Coupling Neutralization with 16% PAE, ” 41st European Microwave Conference, pp. 1115-1118, October 2011. [53] T.-Y. Yang, L.-C. Pai and H.-K. Chiou, ‘‘A Compact Ka-band Power Amplifier using Finite-Ground Coplanar Waveguide Design,” Proceedings on Asia-Pacific Conference, 2005. [54] 高銘鴻, ‘‘共平面波導集總元件設計,’’ 國立中央大學電機工程所碩士論文, June 2003. [55] ‘‘why Fifty ohms,” http://www.microwaves101.com/encyclopedia/why50ohms .cfm [56] W.T. Blackband, ‘‘The Choice of Impedance for Coaxial Radio-frequency Cables,” Proceedings of the IEE - Part B: Radio and Electronic Engineering, pp.804-814, November 1955. [57] W. R. Eisenstadt, and Y. Eo, ‘‘S-Parameter-Based IC Interconnect Transmission Line Characterization,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, pp. 483-490, August 1992. [58] C. Wang, V. F. Fusco, and L. Sun, ‘‘43– 68 GHz broad band low noise MMIC medium power amplifier,” 11th IEEE International Conference on Communication Technology, November 2008. [59] J. Riskal, M. Karkkainen, P. Kangaslahti and V. Porral, ‘‘Amplifiers and Signal Generation Circuits for 60GHz Wireless Broadband System,” 30th European Microwave Conference, 2000. [60] R. N. Simons ‘‘Coplanar Waveguide Circuits, Components & Systems,” Willy, 2001. [61] 蕭介勛, ‘‘本地振盪源的注入與牽引現象研究,’’ 國立中山大學電機工程所碩士論文, July 2008. [62] H. Zheng and H. C. Luong, ‘‘Ultra-Low-Voltage 20-GHz Frequency Dividers Using Transformer Feedback in 0.18-μm CMOS Process,’’ IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2293-2302, Octorber 2008. [63] 徐鈺翔, ‘‘壓空震盪器調諧範圍與除頻器除頻範圍之研製,’’ 國立中興大學電機工程學系碩士論文, July 2011. [64] S. Lee, S. Jang, and C. Nguyen, ‘‘Low-Power-Consumption Wide-Locking-Range Dual-Injection-Locked 1/2 Divider Through Simultaneous Optimization of VCO Loaded Q and Current,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, October 2012. [65] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, ‘‘The Quadrature LC Oscillator: A Complete Portrait Based on Injection Locking,’’ IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1916-1932, September 2007. [66] A. Hajimiri and T. H. Lee, ‘‘Design Issues in CMOS Differential LC Oscillators,’’ IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
摘要: 本論文的主題為設計射頻發射機子電路塊:功率放大器以及除頻器。本論文分為六個章節,第一章簡述研究背景,並對過去的相關研究作一個簡單的介紹。 第二章簡單敘述功率放大器的各種設計考量,並對線性功率放大器的分類作簡單的介紹。 第三章部分,設計一個應用於802.11a 5.2GHz的功率放大器,採用的製程為0.18μm CMOS process,並採用線性器(linearizer)作為功率輸出級之閘極偏壓,可以較小的成本而有效增進線性度,另外採用兩級的疊接式組態以增加隔離度。 第四章為操作於V頻段(60GHz)的功率放大器,使用的製程為WIN GaAs 0.15μm pHEMT製程。此製程有高電子遷移率且有較大的崩潰電壓,較適合高頻功率放大器的應用。此電路採用三級的共源極架構實現,其中第三級在輸入端採用分支線耦合器分成正交的兩路訊號後再分別由輸出級兩個電晶體放大訊號,再同樣以分支線耦合器結合功率輸出,以得到較大的輸出功率。 第五章為設計一24GHz的注入鎖定除二除頻器,首先探討注入鎖定除頻器各參數之間的相互關係,找出設計時的考量方法,此電路採用直接注入架構以增大可除範圍,改變LC-tank內的等效Q值,增大其操作在高頻時的輸出功率及鎖定範圍。 第六章則總結各章的研究成果並探討未來的研究與改進方向。
In this thesis, design of two microwave transmitter sub-block circuits, including the power amplifier and the frequency divider, is presented. This thesis consists of six chapters: Chapter one, we will briefly introduce our research background and the contents of this thesis. In chapter two, we will talk about some design issues for microwave power amplifier, including the power gain, stability, and power added efficiency. We will also show the various types of linear power amplifiers. A two-stage power amplifier with diode linearizer is presented in chapter three. It is implemented in the 0.18μm CMOS process for 802.11a 5.2GHz applications. The power amplifier is consisted of two cascode stages and has good stability. The diode linearizer is used to offer the bias voltage for the output stage and has an advantage of increasing the linearity of the circuit. In the chapter four, design of a 60GHz power amplifier for IEEE 802.15.3c application is presented and design method of coplanar waveguide is also discussed. The design is implemented by WIN GaAs 0.15μm pHEMT process technology. The power amplifier is composed of three stages, including the gain stage, the driver stage, and the output power stage. At the output stage, the branch line couplers are adopted to achieve power dividing/combining functions to get the high output power. In the chapter five, we focus on the design of a popular high-frequency divider: injection-locked frequency divider (ILFD). we will first figure out the relationship between the parameters of ILFD, and then try to design a wide locking ILFD which can be operated in K-band. According to the design equations, we know that the locking range of the ILFD is inversely proportional to the Q factor of LC-tank. But low Q factor will cause low output power and therefore narrow the locking range when the ILFD is operated in high frequency. We have designed a ILFD which has both wide locking range and high output power in this chapter. A simple conclusion is made in chapter six and we shortly discuss the possible method to improve the circuits for future work.
URI: http://hdl.handle.net/11455/9305
其他識別: U0005-0402201323521800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0402201323521800
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.