Please use this identifier to cite or link to this item:
標題: 豬進行性萎縮性鼻炎與豬黴漿菌性肺炎雙價疫苗安全性與保護效力之評估
Safety and Efficacy Evaluation of Porcine Progressive Atrophic Rhinitis and Mycoplasmal Pneumonia Bivalent Vaccines
作者: Cheng-Han Yang
關鍵字: 萎縮性鼻炎
porcine progressive atrophic rhinitis
mycoplasmal pneumonia
bivalent vaccine
引用: 周濟眾。獸醫實驗診斷學。台北,藝軒,308,2007。 翁仲男。豬黴漿菌性肺炎疫苗。農業生技產業季刊第六期:9~14,2006。 陳有得。豬萎縮性鼻炎重組巴氏桿菌毒素次單位疫苗之免疫效力試驗。碩士論文。中興大學。獸醫學研究所。台中。中華民國。1999。 許聰文。豬萎縮性鼻炎粗製巴氏桿菌毒素之免疫原性狀研究。碩士論文。中興大學獸醫研究所。台中。中華民國。1993。 廖志明、黃千衿、宣詩玲、李維誠、林正忠、劉正義、簡茂盛。豬進行性萎縮性鼻炎重組次單位PMT毒素不活化菌苗之安全性與效力評估。台灣獸醫誌。31 (3): 160-171。2005。 Ackermann MR, Adams DA, Gerken LL, Beckman MJ, Rimler RB. Purified Pasteurella multocida protein toxin reduces acid phosphatase-positive osteoclasts in the ventral nasal concha of gnotobiotic pigs. Calcif Tissue Int 52: 455-459, 1993. Ackermann MR, DeBey MC, Register KB, Larson DJ, Kinyon JM. Tonsil and turbinate colonization by toxigenic and nontoxigenic strains of Pasteurella multocida in conventionally raised swine. J Vet Diagn Invest 6: 375-377, 1994. Almagor M, Kahane I, Yatziv S. Role of superoxide anion in host cell injury induced by Mycoplasma pneumoniae infection. A study in normal and trisomy 21 cells. J Clin Invest 73: 842-847, 1984. Amass SF, Clark LK, van Alstine WG, Bowersock TL, Murphy DA, Knox KE, Albregts SR. Interaction of Mycoplasma hyopneumoniae and Pasteurella multocida infections in swine. J Am Vet Med Assoc 204: 102-107, 1994. Aminova LR, Luo S, Bannai Y, Ho M, Wilson BA. The C3 domain of Pasteurella multocida toxin is the minimal domain responsible for activation of Gq-dependent calcium and mitogenic signaling. Protein Sci 17: 945-949, 2008. Bagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 72: 962-969, 2002. Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. Pasteurella multocida toxin activates human monocyte-derived and murine bone marrow-derived dendritic cells in vitro but suppresses antibody production in vivo. Infect Immun 73: 413-421, 2005. Bai F, Ni B, Liu M, Feng Z, Xiong Q, Xiao S, Shao G. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation. Vet Immunol Immunopathol 155: 155-161, 2013. Beier D, Gross R. The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. Adv Exp Med Biol 631: 149-160, 2008. Bethe A, Wieler LH, Selbitz HJ, Ewers C. Genetic diversity of porcine Pasteurella multocida strains from the respiratory tract of healthy and diseased swine. Vet Microbiol 139: 97-105, 2009. Bin L, Luping D, Bing S, Zhengyu Y, Maojun L, Zhixin F, Yanna W, Haiyan W, Guoqing S, Kongwang H. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae. PLoS ONE 9: e101968, 2014. Blöcker D, Berod L, Fluhr JW, Orth J, Idzko M, Aktories K, Norgauer J. Pasteurella multocida toxin (PMT) activates RhoGTPases, induces actin polymerization and inhibits migration of human dendritic cells, but does not influence macropinocytosis. Int Immunol 18: 459-464, 2006. Bogema DR, Deutscher AT, Woolley LK, Seymour LM, Raymond BBA, Tacchi JL, Padula MP, Dixon NE, Minion FC, Jenkins C, Walker MJ, Djordjevic SP. Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography. mBio 3: e00282-00211, 2012. Bowersock TL, Hooper T, Pottenger R. Use of ELISA to detect toxigenic Pasteurella multocida in atrophic rhinitis in swine. J Vet Diagn Invest 4: 419-422, 1992. Brockmeier SL, Register KB, Nicholson TL, Loving CL. Bordetellosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, and Stevenson GW, ed. Disease of swine. 10 ed. John Wiley & Sons, USA, 670-679, 2012. Buboltz AM, Nicholson TL, Karanikas AT, Preston A, Harvill ET. Evidence for horizontal gene transfer of two antigenically distinct O antigens in Bordetella bronchiseptica. Infect Immun 77: 3249-3257, 2009. Busch C, Orth J, Djouder N, Aktories K. Biological activity of a C-terminal fragment of Pasteurella multocida toxin. Infect Immun 69: 3628-3634, 2001. Calus D, Baele M, Meyns T, de Kruif A, Butaye P, Decostere A, Haesebrouck F, Maes D. Protein variability among Mycoplasma hyopneumoniae isolates. Vet Microbiol 120: 284-291, 2007. Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39: 1300-1306, 1983. Carter GR. Studies on Pasteurella multocida. I. A hemagglutination test for the identification of serological types. Am J Vet Res 16: 481-484, 1955. Caruso JP, Ross RF. Effects of Mycoplasma hyopneumoniae and Actinobacillus (Haemophilus) pleuropneumoniae infections on alveolar macrophage functions in swine. Am J Vet Res 51: 227-231, 1990. Chanter N, Rutter JM, Luther PD. Rapid detection of toxigenic Pasteurella multocida by an agar overlay method. Vet Rec 119: 629-630, 1986. Chen JR, Liao CW, Mao SJ, Weng CN. A recombinant chimera composed of repeat region RR1 of Mycoplasma hyopneumoniae adhesin with Pseudomonas exotoxin: in vivo evaluation of specific IgG response in mice and pigs. Vet Microbiol 80: 347-357, 2001. Chen YL, Wang SN, Yang WJ, Chen YJ, Lin HH, Shiuan D. Expression and immunogenicity of Mycoplasma hyopneumoniae heat shock protein antigen P42 by DNA vaccination. Infect Immun 71: 1155-1160, 2003. Ciprian A, Palacios JM, Quintanar D, Batista L, Colmenares G, Cruz T, Romero A, Schnitzlein W, Mendoza S. Florfenicol feed supplemented decrease the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in Mexico. Res Vet Sci 92: 191-196, 2012. de Jong MF, Nielsen JP. Definition of progressive atrophic rhinitis. Vet Rec 126: 93, 1990. Del Pozo Sacristan R, Sierens A, Marchioro SB, Vangroenweghe F, Jourquin J, Labarque G, Haesebrouck F, Maes D. Efficacy of early Mycoplasma hyopneumoniae vaccination against mixed respiratory disease in older fattening pigs. Vet Rec 174: 197, 2014. Deutscher AT, Jenkins C, Minion FC, Seymour LM, Padula MP, Dixon NE, Walker MJ, Djordjevic SP. Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia. Mol Microbiol 78: 444-458, 2010. Done JT. Porcine atrophic rhinitis: snout radiography as an aid to diagnosis and detection of the disease. Vet Rec 98: 23-28, 1976. Dugal F, Belanger M, Jacques M. Enhanced adherence of Pasteurella multocida to porcine tracheal rings preinfected with Bordetella bronchiseptica. Can J Vet Res 56: 260-264, 1992. Elias B, Boros G, Albert M, Tuboly S, Gergely P, Papp L, Barna Vetro I, Rafai P, Molnar E. Clinical and pathological effects of the dermonecrotic toxin of Bordetella bronchiseptica and Pasteurella multocida in specific-pathogen-free piglets. Nihon Juigaku Zasshi 52: 677-688, 1990. Fano E, Pijoan C, Dee S, Deen J. Effect of Mycoplasma hyopneumoniae colonization at weaning on disease severity in growing pigs. Can J Vet Res 71: 195-200, 2007. Findlay DM, Atkins GJ. Relationship between serum RANKL and RANKL in bone. Osteoporos Int 22: 2597-2602, 2011. Flak TA, Heiss LN, Engle JT, Goldman WE. Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68: 1235-1242, 2000. Foged NT, Nielsen JP, Jorsal SE. Protection against progressive atrophic rhinitis by vaccination with Pasteurella multocida toxin purified by monoclonal antibodies. Vet Rec 125: 7-11, 1989. Fraile L, Alegre A, Lopez-Jimenez R, Nofrarias M, Segales J. Risk factors associated with pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Vet J 184: 326-333, 2010. Frandsen PL, Foged NT, Petersen SK, Bording A. Characterization of toxin from different strains of Pasteurella multocida serotype A and D. Zentralbl Veterinarmed B 38: 345-352, 1991. Friis NF. Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey. Nord Vet Med 27: 337-339, 1975. Galli V, Simionatto S, Marchioro SB, Fisch A, Gomes CK, Conceicao FR, Dellagostin OA. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine 31: 135-140, 2012. Geissler B, Tungekar R, Satchell KJ. Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proc Natl Acad Sci U S A 107: 5581-5586, 2010. Goodwin RF, Chanter N, Rutter JM. Detection and distribution of toxigenic Pasteurella multocida in pig herds with different degrees of atrophic rhinitis. Vet Rec 126: 452-456, 1990. Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC. Protein production and purification. Nat Methods 5: 135-146, 2008. Guerrero RJ. Respiratory disease: an important global problem in the swine industry. Proceedings, International Pig Veterinary Society, 11th Congress, Lausanne, Switzerland 98, 1990. Gwaltney SM, Galvin RJ, Register KB, Rimler RB, Ackermann MR. Effects of Pasteurella multocida toxin on porcine bone marrow cell differentiation into osteoclasts and osteoblasts. Vet Pathol 34: 421-430, 1997. Harms PA, Sorden SD, Halbur PG, Bolin SR, Lager KM, Morozov I, Paul PS. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol 38: 528-539, 2001. Harper M, Boyce JD, Adler B. The key surface components of Pasteurella multocida: capsule and lipopolysaccharide. Curr Top Microbiol Immunol 361: 39-51, 2012. Hildebrand D, Heeg K, Kubatzky KF. Pasteurella multocida toxin-stimulated osteoclast differentiation is B cell dependent. Infect Immun 79: 220-228, 2011. Hildebrand D, Sahr A, Wolfle SJ, Heeg K, Kubatzky KF. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling. Cell Commun Signal 10: 22, 2012. Horiguchi Y, Nakai T, Kume K. Purification and characterization of Bordetella bronchiseptica dermonecrotic toxin. Microb Pathog 6: 361-368, 1989. Hsu T, Minion FC. Identification of the cilium binding epitope of the Mycoplasma hyopneumoniae P97 adhesin. Infect Immun 66: 4762-4766, 1998. Hsuan SL, Liao CM, Huang C, Winton JR, Chen ZW, Lee WC, Liao JW, Chen TH, Chiou CJ, Yeh KS, Chien MS. Efficacy of a novel Pasteurella multocida vaccine against progressive atrophic rhinitis of swine. Vaccine 27: 2923-2929, 2009. iDali C, Foged NT, Frandsen PL, Nielsen MH, Elling F. Ultrastructural localization of the Pasteurella multocida toxin in a toxin-producing strain. J Gen Microbiol 137: 1067-1071, 1991. Jensen ED, Gopalakrishnan R, Westendorf JJ. Regulation of gene expression in osteoblasts. Biofactors 36: 25-32, 2010. Jordan RW, Hamilton TD, Hayes CM, Patel D, Jones PH, Roe JM, Williams NA. Modulation of the humoral immune response of swine and mice mediated by toxigenic Pasteurella multocida. FEMS Immunol Med Microbiol 39: 51-59, 2003. Jutras I, Martineau-Doize B. Stimulation of osteoclast-like cell formation by Pasteurella multocida toxin from hemopoietic progenitor cells in mouse bone marrow cultures. Can J Vet Res 60: 34-39, 1996. Kamitani S, Ao S, Toshima H, Tachibana T, Hashimoto M, Kitadokoro K, Fukui-Miyazaki A, Abe H, Horiguchi Y. Enzymatic actions of Pasteurella multocida toxin detected by monoclonal antibodies recognizing the deamidated alpha subunit of the heterotrimeric GTPase Gq. FEBS J 278: 2702-2712, 2011. Kamitani S, Kitadokoro K, Miyazawa M, Toshima H, Fukui A, Abe H, Miyake M, Horiguchi Y. Characterization of the membrane-targeting C1 domain in Pasteurella multocida toxin. J Biol Chem 285: 25467-25475, 2010. King KW, Faulds DH, Rosey EL, Yancey RJ, Jr. Characterization of the gene encoding Mhp1 from Mycoplasma hyopneumoniae and examination of Mhp1's vaccine potential. Vaccine 15: 25-35, 1997. Kitadokoro K, Kamitani S, Miyazawa M, Hanajima-Ozawa M, Fukui A, Miyake M, Horiguchi Y. Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin. Proc Natl Acad Sci U S A 104: 5139-5144, 2007. Kubatzky KF. Pasteurella multocida and immune cells. Curr Top Microbiol Immunol 361: 53-72, 2012. Kubin M, Kamoun M, Trinchieri G. Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med 180: 211-222, 1994. Lariviere S, Leblanc L, Mittal KR, Martineau GP. Comparison of isolation methods for the recovery of Bordetella bronchiseptica and Pasteurella multocida from the nasal cavities of piglets. J Clin Microbiol 31: 364-367, 1993. Lax AJ, Chanter N. Cloning of the toxin gene from Pasteurella multocida and its role in atrophic rhinitis. J Gen Microbiol 136: 81-87, 1990. Lee J, Kang H-E, Woo H-J. Protective Immunity Conferred by the C-Terminal Fragment of Recombinant Pasteurella multocida Toxin. Clinical and Vaccine Immunology : CVI 19: 1526-1531, 2012. Liao CM, Huang C, Hsuan SL, Chen ZW, Lee WC, Liu CI, Winton JR, Chien MS. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs. Vaccine 24: 27-35, 2006. Lin JH, Chen SP, Yeh KS, Weng CN. Mycoplasma hyorhinis in Taiwan: diagnosis and isolation of swine pneumonia pathogen. Vet Microbiol 115: 111-116, 2006. Lo SC, Hayes MM, Kotani H, Pierce PF, Wear DJ, Newton PB, 3rd, Tully JG, Shih JW. Adhesion onto and invasion into mammalian cells by mycoplasma penetrans: a newly isolated mycoplasma from patients with AIDS. Mod Pathol 6: 276-280, 1993. Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijens B, Verbeke W, Viaene J, de Kruif A. Effect of vaccination against Mycoplasma hyopneumoniae in pig herds with an all-in/all-out production system. Vaccine 17: 1024-1034, 1999. Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 126: 297-309, 2008. Magyar T, Donko T, Repa I, Kovacs M. Regeneration of toxigenic Pasteurella multocida induced severe turbinate atrophy in pigs detected by computed tomography. BMC Vet Res 9: 222, 2013. Magyar T, Kovacs F, Donko T, Biro H, Romvari R, Kovacs M, Repa I. Turbinate atrophy evaluation in pigs by computed tomography. Acta Vet Hung 51: 485-491, 2003. Mare CJ, Switzer WP. New Species: Mycoplasma hyopneumoniae; a Causative Agent of Virus Pig Pneumonia. Vet Med Small Anim Clin 60: 841-846, 1965. Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: 98-105, 2008. Marois C, Le Carrou J, Kobisch M, Gautier-Bouchardon AV. Isolation of Mycoplasma hyopneumoniae from different sampling sites in experimentally infected and contact SPF piglets. Vet Microbiol 120: 96-104, 2007. Martelli P, Terreni M, Guazzetti S, Cavirani S. Antibody response to Mycoplasma hyopneumoniae infection in vaccinated pigs with or without maternal antibodies induced by sow vaccination. J Vet Med B Infect Dis Vet Public Health 53: 229-233, 2006. Mason JT, O'Leary TJ. Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J Histochem Cytochem 39: 225-229, 1991. McKenzie B, Corbett A, Brady J, Dyer C, Strugnell R, Kent S, Kramer D, Boyle J, Lew A. Nucleic acid vaccines. Immunologic Research 24: 225-244, 2001. Minion FC, Adams C, Hsu T. R1 region of P97 mediates adherence of Mycoplasma hyopneumoniae to swine cilia. Infect Immun 68: 3056-3060, 2000. Mullan PB, Lax AJ. Pasteurella multocida toxin is a mitogen for bone cells in primary culture. Infect Immun 64: 959-965, 1996. Mullan PB, Lax AJ. Pasteurella multocida toxin stimulates bone resorption by osteoclasts via interaction with osteoblasts. Calcif Tissue Int 63: 340-345, 1998. Muneta Y, Minagawa Y, Shimoji Y, Nagata R, Markham PF, Browning GF, Mori Y. IL-18 expression in pigs following infection with Mycoplasma hyopneumoniae. J Interferon Cytokine Res 26: 637-644, 2006. Nakai T, Sawata A, Tsuji M, Kume K. Characterization of dermonecrotic toxin produced by serotype D strains of Pasteurella multocida. Am J Vet Res 45: 2410-2413, 1984. Nathues H, Kubiak R, Tegeler R, grosse Beilage E. Occurrence of Mycoplasma hyopneumoniae infections in suckling and nursery pigs in a region of high pig density. Vet Rec 166: 194-198, 2010. Oba T, Andachi Y, Muto A, Osawa S. CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci U S A 88: 921-925, 1991a. Oba T, Andachi Y, Muto A, Osawa S. Translation in vitro of codon UGA as tryptophan in Mycoplasma capricolum. Biochimie 73: 1109-1112, 1991b. Ogawa Y, Oishi E, Muneta Y, Sano A, Hikono H, Shibahara T, Yagi Y, Shimoji Y. Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine 27: 4543-4550, 2009. Okada M, Asai T, Ono M, Sakano T, Sato S. Protective effect of vaccination with culture supernate of M. hyopneumoniae against experimental infection in pigs. J Vet Med B Infect Dis Vet Public Health 47: 527-533, 2000. Opriessnig T, Gimenez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev 12: 133-148, 2011. Orth JH, Aktories K. Pasteurella multocida toxin activates various heterotrimeric G proteins by deamidation. Toxins (Basel) 2: 205-214, 2010. Orth JH, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem 282: 3050-3057, 2007. Park SC, Yibchok-Anun S, Cheng H, Young TF, Thacker EL, Minion FC, Ross RF, Hsu WH. Mycoplasma hyopneumoniae increases intracellular calcium release in porcine ciliated tracheal cells. Infect Immun 70: 2502-2506, 2002. Pearce HG, Roe CK. Atrophic rhinitis-epidemiology and effect of the disease on maturity time of market pigs. Can Vet J 8: 186-188, 1967. Pennings AM, Storm PK. A test in vero cell monolayers for toxin production by strains of Pasteurella multocida isolated from pigs suspected of having atrophic rhinitis. Vet Microbiol 9: 503-508, 1984. Petersen SK. The complete nucleotide sequence of the Pasteurella multocida toxin gene and evidence for a transcriptional repressor, TxaR. Mol Microbiol 4: 821-830, 1990. Petersen SK, Foged NT, Bording A, Nielsen JP, Riemann HK, Frandsen PL. Recombinant derivatives of Pasteurella multocida toxin: candidates for a vaccine against progressive atrophic rhinitis. Infect Immun 59: 1387-1393, 1991. Pullinger GD, Bevir T, Lax AJ. The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol Microbiol 51: 255-269, 2004. Pullinger GD, Sowdhamini R, Lax AJ. Localization of functional domains of the mitogenic toxin of Pasteurella multocida. Infect Immun 69: 7839-7850, 2001. Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094-1156, 1998. Register KB, Brockmeier SL, de Jong MF, Pijoan C. Pasteurellosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, and Stevenson GW, ed. Disease of swine. 10 ed. John Wiley & Sons, USA, 798-810, 2012. Register KB, Sacco RE, Brockmeier SL. Immune response in mice and swine to DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine 25: 6118-6128, 2007. Reynolds SC, St Aubin LB, Sabbadini LG, Kula J, Vogelaar J, Runnels P, Peters AR. Reduced lung lesions in pigs challenged 25 weeks after the administration of a single dose of Mycoplasma hyopneumoniae vaccine at approximately 1 week of age. Vet J 181: 312-320, 2009. Riising HJ, van Empel P, Witvliet M. Protection of piglets against atrophic rhinitis by vaccinating the sow with a vaccine against Pasteurella multocida and Bordetella bronchiseptica. Vet Rec 150: 569-571, 2002. Rodriguez F, Ramirez GA, Sarradell J, Andrada M, Lorenzo H. Immunohistochemical labelling of cytokines in lung lesions of pigs naturally infected with Mycoplasma hyopneumoniae. J Comp Pathol 130: 306-312, 2004. Sakano T, Sakurai K, Furutani T, Shimizu T. Immunogenicity and safety of an attenuated Bordetella bronchiseptica vaccine in pigs. Am J Vet Res 45: 1814-1817, 1984. Sarradell J, Andrada M, Ramirez AS, Fernandez A, Gomez-Villamandos JC, Jover A, Lorenzo H, Herraez P, Rodriguez F. A morphologic and immunohistochemical study of the bronchus-associated lymphoid tissue of pigs naturally infected with Mycoplasma hyopneumoniae. Vet Pathol 40: 395-404, 2003. Seo J, Lee S, Pyo H, Lee J, Kim T. Protective potential of an attenuated Pasteurella multocida, which expresses only the N-terminal truncated fragment of P. multocida toxin. Canadian Journal of Veterinary Research 74: 25-29, 2010. Seo J, Pyo H, Lee S, Lee J, Kim T. Expression of 4 truncated fragments of Pasteurella multocida toxin and their immunogenicity. Canadian Journal of Veterinary Research 73: 184-189, 2009. Seymour LM, Jenkins C, Deutscher AT, Raymond BB, Padula MP, Tacchi JL, Bogema DR, Eamens GJ, Woolley LK, Dixon NE, Walker MJ, Djordjevic SP. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell Microbiol 14: 81-94, 2012. Sibila M, Nofrarias M, Lopez-Soria S, Segales J, Riera P, Llopart D, Calsamiglia M. Exploratory field study on Mycoplasma hyopneumoniae infection in suckling pigs. Vet Microbiol 121: 352-356, 2007. Sibila M, Pieters M, Molitor T, Maes D, Haesebrouck F, Segales J. Current perspectives on the diagnosis and epidemiology of Mycoplasma hyopneumoniae infection. Vet J 181: 221-231, 2009. Siegert P, Schmidt G, Papatheodorou P, Wieland T, Aktories K, Orth JH. Pasteurella multocida toxin prevents osteoblast differentiation by transactivation of the MAP-kinase cascade via the Galpha(q/11)--p63RhoGEF--RhoA axis. PLoS Pathog 9: e1003385, 2013. Simionatto S, Marchioro SB, Galli V, Luerce TD, Hartwig DD, Moreira AN, Dellagostin OA. Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing Mycoplasma hyopneumoniae genes in Escherichia coli. J Microbiol Methods 79: 101-105, 2009. Sterner-Kock A, Lanske B, Uberschar S, Atkinson MJ. Effects of the Pasteurella multocida toxin on osteoblastic cells in vitro. Vet Pathol 32: 274-279, 1995. Sun X, Jones HP, Hodge LM, Simecka JW. Cytokine and chemokine transcription profile during Mycoplasma pulmonis infection in susceptible and resistant strains of mice: macrophage inflammatory protein 1beta (CCL4) and monocyte chemoattractant protein 2 (CCL8) and accumulation of CCR5+ Th cells. Infect Immun 74: 5943-5954, 2006. Strack J, Heni H, Gilsbach R, Hein L, Aktories K, Orth JH. Noncanonical G-protein-dependent modulation of osteoclast differentiation and bone resorption mediated by Pasteurella multocida toxin. MBio 5: e02190, 2014. Strait EL, Madsen ML, Minion FC, Christopher-Hennings J, Dammen M, Jones KR, Thacker EL. Real-time PCR assays to address genetic diversity among strains of Mycoplasma hyopneumoniae. J Clin Microbiol 46: 2491-2498, 2008. Thacker EL, Minion FC. Mycoplasmosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, and Stevenson GW, ed. Disease of swine. 10 ed. John Wiley & Sons, USA, 779-797, 2012. Thurston JR, Rimler RB, Ackermann MR, Cheville NF. Use of rats to compare atrophic rhinitis vaccines for protection against effects of heat-labile protein toxin produced by Pasteurella multocida serogroup D. Vet Immunol Immunopathol 33: 155-162, 1992. Van Drunen Littel-van den Hurk S, Braun RP, Lewis PJ, Karvonen BC, Babiuk LA, Griebel PJ. Immunization of neonates with DNA encoding a bovine herpesvirus glycoprotein is effective in the presence of maternal antibodies. Viral Immunol 12: 67-77, 1999. Vicca J, Stakenborg T, Maes D, Butaye P, Peeters J, de Kruif A, Haesebrouck F. Evaluation of virulence of Mycoplasma hyopneumoniae field isolates. Vet Microbiol 97: 177-190, 2003. Villarreal I, Meyns T, Dewulf J, Vranckx K, Calus D, Pasmans F, Haesebrouck F, Maes D. The effect of vaccination on the transmission of Mycoplasma hyopneumoniae in pigs under field conditions. Vet J 188: 48-52, 2011. Voets MT, Klaassen CH, Charlier P, Wiseman A, Descamps J. Evaluation of an atrophic rhinitis vaccine under controlled conditions. Vet Rec 130: 549-553, 1992. Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202: 139-156, 2004. White M. Porcine respiratory disease complex (PRDC): Part 2: Non-infectious factors. Livestock 16: 44-46, 2011. Wilson S, Van Brussel L, Saunders G, Runnels P, Taylor L, Fredrickson D, Salt J. Vaccination of piglets up to 1 week of age with a single-dose Mycoplasma hyopneumoniae vaccine induces protective immunity within 2 weeks against virulent challenge in the presence of maternally derived antibodies. Clin Vaccine Immunol 20: 720-724, 2013. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41: 413-424, 2011. Woolley LK, Fell S, Gonsalves JR, Walker MJ, Djordjevic SP, Jenkins C, Eamens GJ. Evaluation of clinical, histological and immunological changes and qPCR detection of Mycoplasma hyopneumoniae in tissues during the early stages of mycoplasmal pneumonia in pigs after experimental challenge with two field isolates. Vet Microbiol 161: 186-195, 2012. Xiong Q, Wei Y, Xie H, Feng Z, Gan Y, Wang C, Liu M, Bai F, Xie F, Shao G. Effect of different adjuvant formulations on the immunogenicity and protective effect of a live Mycoplasma hyopneumoniae vaccine after intramuscular inoculation. Vaccine 32: 3445-3451, 2014. Zhang Q, Young TF, Ross RF. Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun 63: 1013-1019, 1995.
摘要: 本實驗以重組次單位巴氏桿菌毒素(rsPMT)添加Pasteurella multocida type A、type D與Bordetella bronchiseptica及Mycoplasma hyopneumoniae不活化菌苗作為主要抗原,再以不同抗原比例混合水質或油質佐劑製成豬進行性萎縮性鼻炎(PAR)與豬黴漿菌性肺炎(MPS)雙價疫苗,並應用小鼠、天竺鼠及豬隻進行疫苗之安全性及免疫效力試驗。於小鼠及天竺鼠的試驗結果顯示,不同抗原比例及佐劑組合的疫苗安全性及免疫效力不一,但以適當比例的PAR與MPS抗原搭配水質佐劑之劑型,同時具有高度之安全性與免疫保護效力。其次,豬隻試驗結果顯示,以相同抗原比例之水質或油質佐劑劑型免疫者,於免疫兩次後豬隻皆無任何不良反應,而血清中PMT中和抗體力價均呈現揚升,且以油質佐劑組可達16倍保護力價以上最為明顯。經以PMT毒素(80 μg/mL)攻毒後,兩組的中和抗體力價皆迅速被誘發至16倍以上,且至少可維持至攻毒後4週。此外,兩免疫組的鼻甲介骨萎縮程度評分則分別為1.33及1.72,均明顯低於無免疫攻毒組的3.11。而於攻毒後平均日增重之評估上,兩免疫組於增重表現也均優於無免疫對照組。至於MPS保護效力評估方面,豬隻分別以此二種不同佐劑劑型免疫後,血清中對M. hyopneumoniae具特異性的抗體力價皆能迅速轉陽,而未免疫對照組則仍維持陰性,此外,兩免疫組的肺臟病變指數分別為10.25與10.83,亦明顯低於無免疫對照組的15.5。另一方面,本試驗也評估不同PAR次單位抗原組合(rsPMT Tox A與Tox C)以及刪除P. multocida type A菌體抗原後對PAR疫苗保護效力的影響,嘗試降低疫苗中非絕對必要性抗原含量而提升疫苗之安全性。結果顯示,不論以rsPMT Tox A或Tox C抗原免疫的小鼠及豬隻,血清中PMT的中和抗體力價皆較對照組明顯揚升,而經PMT攻毒後兩免疫組豬隻的鼻甲介骨萎縮程度也均明顯低於未免疫組。至於P. multocida type A添加與否對免疫豬隻的中和抗體力價以及鼻甲介骨萎縮程度則無明顯差異。上述試驗結果顯示,不論搭配水質或油質佐劑,經應用PAR與MPS抗原以適當比例配製的雙價疫苗,於豬隻中均具良好安全性及免疫保護效力。另外,以rsPMT Tox C為次單位抗原的PAR疫苗亦呈現良好免疫保護效力,而添加P. multocida type A菌體抗原與否對PAR疫苗免疫保護效力則無明顯影響。
Recombinant subunit Pasteurella multocida toxin (rsPMT) combined with P. multocida and Bordetella bronchiseptica bacterins that were further supplemented with different ratio of inactivated Mycoplasma hyopneumoniae bacterin and emulsified with hydrophilic or oil adjuvants to formulate Porcine progressive atrophic rhinitis (PAR) and Mycoplasmal pneumonia of swine (MPS) bivalent vaccines in this trial. Several animal models including mice, guinea pig, and swine were utilized to evaluate the safety and efficacy of the PAR-MPS bivalent vaccines. Preliminary results indicated that different combinations of antigen ratio or adjuvant type revealed varying results on safety and efficacy trials in mice and guinea pig models. Among them, with proper ratio of PAR-MPS antigen emulsified with hydrophilic adjuvant showed a better consistency of immune response as well as on safety trial in mice. No adverse side effects were noticed after pigs immunized twice with hydrophilic or oil adjuvant bivalent vaccines and more than 1:16 of neutralizing antibody titer against PMT could be detected in oil adjuvant immunized group. Moreover, all immunized pigs elicited good protective immunity against sublethal dose of PMT toxin (80 μg/mL) challenge and the provoked neutralizing antibody could be detected promptly with average of more than 1:16 and lasted for at least 4 weeks after challenge in both hydrophilic and oil adjuvant groups. The mean turbinate conchal atrophy grade indicated 1.33 and 1.72 respectively that were better than 3.11 on non-immunized and PMT challenged pigs. The average daily weight gain in both hydrophilic or oil adjuvant immunized groups were also higher than non-immunized control group. Besides, sera conversion of M. hyopneumoniae-specific antibody could be detected after the first vaccination in both adjuvants immunized groups but no sera conversion was noticed during entire experimental period in control group. Furthermore, the mean of lung lesion score was 15.5 in non-immunized pigs but only 10.25 in hydrophilic adjuvant and 10.83 in oil adjuvant vaccinated groups. In addition, replacement of rsPMT Tox A with rsPMT Tox C and removal of P. multocida type A bacterin from vaccine ingredients were conducted in order to evaluate the possible influence of PAR vaccine safety and efficacy via reducing the potential non absolute essential antigens. The results revealed that there were no significant variations based on prompted neutralizing antibody titer, mean turbinate conchal atrophy grade, and body weight gain between rsPMT Tox A or Tox C immunized groups. Results also illustrated that there were no interference on vaccine efficacy by depletion of P. multocida type A bacterin antigen. In contrast, pigs immunized with P. multocida type A-free vaccines showed better average daily weight gain if compared with original P. multocida type A bacterin added immunized groups. In summary, the bivalent vaccines containing proper ratio of PAR-MPS antigens that emulsified with hydrophilic or oil adjuvant showed good protective immunity in immunized swine. Moreover, the rsPMT Tox C substitution and removal of P. multocida type A bacterin from vaccine antigens may be a good strategy to enhance safety but without compromised with PAR vaccine efficacy.
文章公開時間: 10000-01-01
Appears in Collections:獸醫病理生物學所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.