Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/93086
標題: Enhancement of Immunity and Protection Efficacy in Chickens against Infectious Bronchitis by DNA Prime-Protein Boost Vaccination
藉由 DNA prime-protein boost 之免疫策略提升雞隻對抗傳染性支氣管炎的免疫力及保護力
作者: 高翊綺
Yi-Chi Kao
關鍵字: 
no
引用: Cavanagh D. (2005a). Coronaviruses with Special Emphasis on First Insights Concerning SARS. 1-54. Maclachlan N.J., Edward J.D. (2011). Veterinary virology. 4th ed. 393-413. Tseng Z. M. (1999). Analysis of nucleotide and preparationof inactivated vaccine of infectious bronchitis virusisolated in Taiwan. Master's thesis. National Chung-Hsing University, Taichung, Taiwan. Abd El Rahman S., El-Kenawy A.A., Neumann U., Herrler G., Winter C. (2009). Comparative analysis of the sialic acid binding activity of four different IBV strains. Avian Pathol. 38 (1), 41-45. Abreu J.T., Resende J.S., Flatschart R.B., Folgueras-Flatschart A.V., Mendes A.C., Martins N.R., Silva C.B., Ferreira B.M., Resende M. (2006). Molecular analysis of Brazilian infectious bronchitis field isolatesby reverse transcription-polymerase chain reaction, restriction fragment length polymorphism, and partial sequencing of the N gene. Avian Dis. 50, 494-501. Adzhar A., Gough R.E., Haydon D., Shaw K., Cavanagh D. (1997). Molecular analysis of the 793/B serotype of infectious bronchitis virus in Great Britain. Avian Pathol. 26, 625-640. Alvarado I.R., Villegas P., El-Attrache J., Brown T.P. (2003). Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus. Avian Dis. 47, 1298-1304. Alvarado I.R., Villegas P., El-Attrache J., Jackwood M.W. (2006). Detection of Massachusetts and Arkansas serotypes of infectious bronchitis virus in broilers. Avian Dis. 50, 292-297. Ambali A.G., Jones R.C. (1990). Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis. 34, 809-817. Ammayappan A., Upadhyay C., Gelb J.Jr, Vakharia V.N. (2009). Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI. Arch. Virol.154, 495-499. Bayry J., Goudar M. S., Nighot P.K., Kshirsagar S.G., Ladman B.S., Gelb J.Jr, Ghalsasi G.R., Kolte G.N. (2000). Emergence of a nephropathogenic avian infectious bronchitis virus with a novel genotype in India. J Clin Microbiol. 43(2). 916-918. Beach J.R., Schalm O.W. (1936). A filterable virus, distinct fromthat of laryngotracheitis, the cause of a respiratory disease of chicks. Poult. Sci. 15, 199-206. Ben-Yedidia T., Aronon R. (1997) Design of peptide and polypeptide vaccines. Curr Opin Biotechnol. 8, 442-448 Bhattacharjee P.S., Naylor C.J., Jones R.C. (1994). A simple method for immunofluorescence staining of tracheal organ cultures for the rapid identification of infectious bronchitis virus. Avian Pathol. 23, 471-480. Bijlenga G., Cook J.K., Gelb J.Jr, de Wit J.J. (2004). Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review. Avian Pathol. 33, 550-557. Bisgaard M. (1976). Influence of infectious bronchitis virus on egg production, fertility, hatchability and mortality rate in chickens. Nord Vet Med. 28, 368-376. Black M., Trent A., Tirrell M., Olive C. (2010). Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev. Vaccines. 9(2), 157-173. Bochkov Y.A., Batchenko G.V., Shcherbakova L.O., Borisov A.V., Drygin V. V. (2006). Molecular epizootiology of avian infectious bronchitis virus in Russia. Avian Pathol. 35(5), 379-393. Boltz D.A., Nakai M., Bahra J.M. (2004). Avian infectious bronchitis virus: a possible cause of reduced fertility in the rooster. Avian Dis. 48, 909-915. Boots A.M., Benaissa-Trouw B.J., Hesselink W., Rijke E., Schrier C., Hensen E.J. (1992). Induction of anti-viral immune responses by immunization with recombinant-DNAencoded avian coronavirus nucleocapsid protein. Vaccine 10(2), 119-124. Boursnell M.E., Brown T.D., Foulds I.J., Green P.F., Tomlet F.M., Binns M.M. (1987). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol. 68, 57-77. Brierley I., Boursnell M.E., Binns M.M., Bilimoria B., Blok V.C., Brown T.D., Inglis S.C. (1987). An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 6, 3779-3785. Britton P., Evans S., Dove B., Davies M., Casais R., Cavanagh D. (2005). Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods. 123(2), 203-211. Callison S.A., Jackwood M.W., Hilt D.A. (2001). Molecular characterization of infectious bronchitis virus isolates foreign to the United States and comparison with United States isolates. Avian Dis. 45, 492-499. Casais R., Dove B., Cavanagh D., Britton P. (2003). Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol. 77(16), 9084-9089. Casais R., Davies M., Cavanagh D., Britton P. (2005). Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol. 79,8065-8078. Cavanagh D., Davis D.J., Peters R.W. (1984). Induction of humoral neutralizing and haemagglutination inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol. 13(3), 573-583. Cavanagh D., Davis P.J., Darbyshire J.H., Peters R.W. (1986). Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol. 67, 1435-1442. Cavanagh D., Mawditt K., Adzhar A., Gough R.E., Picault J.P., Naylor C.J., Haydon D., Shaw K., Britton P. (1998). Does IBV change slowly despite the capacity of the spike protein to vary greatly? Adv Exp Med Biol. 440, 729-734. Cavanagh D., Davis P.J., Cook J.K. (1992a). Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathol. 21(3), 401-408. Cavanagh D., Davis P.J., Cook J.K., Li D., Kant A., Koch G. (1992b). Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol. 21(1), 33-43. Cavanagh D. (2001). A nomenclature for avian coronavirus isolates and the question of species status. Avian Pathol. 30(2), 109-115. Cavanagh D. (2003). Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32(6), 567-582. Cavanagh D. (2005b). Coronaviruses in poultry and other birds. Avian Pathol. 34(6), 439-448. Cavanagh D. (2007). Coronavirus avian infectious bronchitis virus. Vet Res. 38(2), 281-297. Chen B.Y., Itakura C. (1996a). Histopathology and immunohistochemistry of renal lesions due to infectious bronchitis virus in chicks. Avian Pathol. 25(2), 269-283. Chen B.Y., Itakura C. (1996b). Cytopathology of chick renal epithelial cells experimentally infected with avian infectious bronchitis virus. Avian Pathol. 25(4), 675-690. Chen H.Y., Yang M.F., Cui B.A., Cui P., Sheng M., Chen G., Wang S.J ., Geng J.W. (2010a). Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing S1 glycoprotein of infectious bronchitis virus and chicken IL-18. Vaccine. 28(51), 8112-8119. Chen H.W., Wang C.H. (2010b). A multiplex Reverse Transcriptase–PCR assay for the genotyping of avian infectious bronchitis viruses. Avian Dis. 54(1), 104-108. Choi K.S., Lee E.K., Jeon W.J., Park M.J., Kim J.W., Kwon J.H. (2009). Pathogenicity and antigenicity of a new variant of Korean nephropathogenic infectious bronchitis virus. J. Vet. Sci. 10(4), 357-359. Cook J.K. (1968). Duration of experimental infectious bronchitis in chickens. Res. Vet. Sci. 9(6), 506-514. Cook J.K., Darbyshire J.H., Peters R.W. (1976). The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus. Arch. Virol. 50, 109-118. Cook J.K., Smith H.W., Huggins M.B. (1986). Infectious bronchitis immunity: its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli. J. Gen. Virol. 67, 1427-1434. Collisson E.W., Pei J., Dzielaw J., Seo S.H. (2000). Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev. Comp. Immunol. 24(2-3), 187-200. de Haan C.A., Vennema H., Rottier P.J. (2000). Assembly of the Coronavirus Envelope: Homotypic Interactions between the M Proteins. J. Virol. 74(11), 4967-4978. Corse E., Machamer C.E. (2000). Infectious Bronchitis Virus E Protein Is Targeted to the Golgi Complex and Directs Release of Virus-Like Particles. J. Virol. 74(9), 4319-4326. Cowen B.S., Hitchner S.B. (1975). Serotyping of avian infectious bronchitis viruses by the virus-neutralization test. Avian Dis. 19(3), 583-595. Cowley T.J., Long S.Y., Weiss S.R. (2010). The murine coronavirus nucleocapsid gene is a determinant of virulence. J. Virol. 84(4), 1752-1763. Crinion R.A., Hofstad M.S. (1971). Pathogenicity of four serotypes of avian infectious bronchitis virus for the oviduct of young chickens of various ages. Avian Dis. 16(2), 351-363. Cumming R.B. (1963). Infectious avian nephrosis (uraemia) in Australia. Vet. 39, 145-147. Darbyshire J.H., Cook J.K. A., Peters R.W. (1978). Growth comparisons of avian infectious bronchitis virus strains in organ cultures of chicken tissues. Arch. Virol. 56(4), 317-325. Kapczynski D.R., Hilt D.A., Shapiro D., Sellers H.S., Jackwood M.W. (2003). Protection of chickens from infectious bronchitis by in ovo and intramuscular vaccination with a DNA vaccine expressing the S1 glycoprotein. Avian Dis. 47(2). 272-285. De Wit J.J. (2000). Detection of infectious bronchitis virus. Avian Pathol. 29, 71-93. Duffy S., Shackelton L.A., Holmes E.C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9(4), 267-276. El-Houadfi M., Jones R.C. (1985). Isolation of avian infectious bronchitis viruses in Morocco including an enterotropic variant. Vet. Rec. 116(16), 445. Fabricant J., Levine P.P. (1962). Experimental production of complicated chronic respiratory disease infection ('air sac' disease). Avian Dis. 6, 13-23. Fabricant J. (1998). The early history of infectious bronchitis. Avian Dis. 42(4), 648-650. Farsang A., Ros C., Renstrom L.H., Baule C., Soos T., Belak S. (2002). Molecularepizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain. Avian Pathol.31, 229-236. Fields D.B. (1973). Arkansas 99, a new infectious bronchitis serotype. Avian Dis. 17(3), 659-661. Gao H., Li K., Gao L., Qi X., Gao Y., Qin L., Wang Y., Wang X. (2013). DNA prime-protein boost vaccination enhances protective immunity against infectious bursal disease virus in chickens. Vet Microbiol. 164(1-2), 9-17. Gelb J.Jr, Perkins B.E., Rosenberger J.K., Allen P.H. (1981). Serologic and cross-protection studies with several infectious bronchitis virus isolates from Delmarva-reared broiler chickens. Avian Dis. 25(3), 655-666. Gelb J.Jr., Cloud S.S. (1983). Effect of serial embryo passage of an Arkansas-type avian infectious bronchitis virus isolate on clinical response, virus recovery, and immunity. Avian Dis.27(3), 679-687. Gelb J.Jr, Keeler C.L.Jr, Nix W.A., Rosenberger J.K., Cloud S.S. (1997). Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus. Avian Dis. 41(3), 661-669. Gough R.E., Randall C.J., Dagless M., Alexander D.J., Cox M.J., Pearson D. (1992). A 'new' strain of infectious bronchitis virus infecting domestic fowl in Great Britain. Vet Rec. 130(22), 493 -494. Guo Z., Wang H., Yang T., Wang X., Lu D., Li Y., Zhang Y. (2010). Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus. J. Virol. Methods. 167(1), 84-89. Haijema B.J., Volders H., Rottier P.J. (2003). Switching species tropism: an effective way to manipulate the feline coronavirus genome. J. Virol. 77(8),4528-4538. Han Z., Sun C., Yan B., Zhang X., Wang Y., Li C., Zhang Q., Ma Y., Shao Y., Liu Q., Kong X., Liu S. (2011). A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. Infect. Genet. Evol. 11(1), 190-200. Han Z., Zhao F., Shao Y., Liu X., Kong X., Song Y., Liu S. (2013). Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein. Virus res. 171(1), 54-64. Hitchner S.B., Winterfield R.W., Appleton G.S. (1966). Infectious bronchitis virus types - incidence in the United States. Avian Dis. 10(1), 98-102. Hodgson T., Casais R., Dove B., Britton P., Cavanagh D. (2004). Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J. Virol. 78(24), 13804-13811. Hofstad M.S., Harry W., Yoder Jr. (1966). Avian infectious bronchitis virus distribution in tissues of chicks. Avian Dis. 10(2), 230- 239. Hsieh M.K., Wu C.C., Lin T.L. (2007). Priming with DNA vaccine and boosting with killed vaccine conferring protection of chickens against infectious bursal disease. Vaccine. 25(29), 5417-5427. Hu S.L., Abrams K., Barber G.N., Moran P., Zarling J.M., Langlois A.J., Kuller L., Morton W.R., Benveniste R.E. (1992) Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science. 255(5043), 456-459. Huang Y.P., Lee H.C., Cheng M.C., Wang C.H. (2004a). S1 and N gene analysis of avian infectious bronchitis viruses in Taiwan. Avian Dis. 48(3), 581-589. Huang Y., Yang Z.Y., Kong W.P., Nable G.J. (2004b). Generation of synthetic severe acuate respiratory syndrome coronavirus pseudoparticles: implication for assembly and vaccine production. J. Virol. 78, 12557-12565. Huang Y.P., Wang C.H. (2006). Development of attenuated vaccines from Taiwanese infectious bronchitis virus strains. Vaccine. 24(6), 785-791. Ignjatovic J., Galli L. (1993). Structural proteins of avian infectious bronchitis virus: role in immunity and protection. Adv. Exp. Med. Biol. 342, 449-53 Ignjatovic J., Sapats S. (2000). Avian infectious bronchitis virus Rev. sci. tech. Off. int. Epiz. 19 (2), 493-508. Ignjatovic J., Sapats S. (2005). Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Archives of virology. 150, 1813-1831. Ivanov K.A., Thiel V., Dobbe J.C., van der Meer Y., Snijder E.J., Ziebuhr J. (2004). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78(11), 5619-5632. Jackwood M.W., Hilt D.A., Callison S.A. (2003). Detection of infectious bronchitis virus by real-time reverse transcriptase-polymerase chain reaction and identification of a quasispecies in the Beaudette strain. Avian Dis. 47(3), 718-724. Jackwood M.W., Boynton T.O., Hilt D.A., McKinley E.T., Kissinger J.C., Paterson A.H., Robertson J., Lemke C., McCall A.W., Williams S.M., Jackwood J.W., Byrd L.A. (2010). Emergence of a group 3 coronavirus through recombination. Virology. 398(1), 98-108. Jayaram H., Fan H., Bowman B.R., Ooi A., Jayaram J., Collisson E.W., Lescar J., Prasad B.V. (2006). X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J. Virol. 80(13), 6612-6620. Jenkins G.M., Rambaut A., Pybus O.G., Holmes E.C. (2002). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54(2),156-165. Jia W., Mondal S.P., Naqi S.A. (2002). Genetic and antigenic diversity in avian infectious bronchitis virus isolates of the 1940s. Avian Dis. 46(2), 437-441. Jiao H., Pan Z., Yin Y., Geng S., Sun L., Jiao X. (2011) Oral and nasal DNA vaccines delivered by attenuated Salmonella enterica serovar Typhimurium induce a protective immune response against infectious bronchitis in chickens. Clin Vaccine Immunol. 18(7), 1041-1045. Johnson R.B., Marquardt W.W. (1975). The neutralizing characteristics of strains of infectious bronchitis virus as measured by the constant virus variable serum methods in chicken tracheal cultures. Avian Dis. 19(1), 82-90. Jones R.C., Jordan F.T.(1971). The site of replication of infectious bronchitis virus in the oviducts of experimentally infected hens. Vet Rec. 89(11), 317-318. Kalinna B.H. (1997). DNA vaccines for parasitic infections. Immunol Cell Biol. 75(4), 370-375. Kant A., Koch G., van Roozelaar D.J., Kusters J.G., Poelwijk F.A., van der Zeijst B.A. (1992). Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. J. Gen. Virol. 73, 591-596. Keeler C.L. Jr, Reed K.L., Nix W.A., Gelb J. Jr. (1998). Serotype identification of avian infectious bronchitis virus by RT-PCR of the peplomer (S-1) gene. Avian Dis. 42(2), 275–284. Klieve A.V., Cumming R.B. (1988). Immunity and cross-protection to nephritis produced by Australian infectious bronchitis viruses used as vaccines. Avian Pathol. 17(4), 829-839. Koch G., Hartog L., Kant A., van Roozelaar D.J. (1990). Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. Gen. Virol. 71, 1929-1935. Kopecky-Bromberg S.A., Martinez-Sobrido L., Frieman M., Baric R.A., Palese P. (2007). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81(2), 548-557. Kuo L., Godeke G.J., Raamsman M.J., Masters P.S., Rottier P.J. (2000). Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J. Virol. 74(3), 1393-1406. Kuo S.M., Kao H.W., Hou M.H., Wang C.H., Lin S.H., Su H.L. (2013). Evolution of infectious bronchitis virus in Taiwan: positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity. Vet Microbiol. 162(2-4), 408-418. Kwon H.M., Jackwood M.W., Gelb J.Jr. (1993). Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Dis. 37(1), 194-202. Kwon H.M., Jackwood M.W. (1995). Molecular cloning and sequence comparison of the S1 glycoprotein of the Gray and JMK strains of avian infectious bronchitis virus. Virus Genes. 9(3), 219-229. Lambrechts C., Pensaert M., Ducatelle R. (1993). Challenge experiments to evaluate cross-protection induced at the trachea and kidney level by vaccine strains and Belgian nephropathogenic isolates of avian infectious bronchitis virus. Avian Pathol. 22(3), 577-590. Lee C.W., Jackwood M.W. (2000). Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Arch. Virol. 145(10), 2135-2148. Lee C.W., Hilt D.A., Jackwood M.W. (2001a). Identification and analysis of the Georgia 98 serotype, a new serotype of infectious bronchitis virus. Avian Dis. 45(1), 164-172. Lee C.W., Jackwood, M.W. (2001b). Origin and evolution of Georgia 98 (GA98), a new serotype of avian infectious bronchitis virus. Virus Res. 80(1-2), 33-39. Lee C.W., Jackwood M.W. (2001c). Spike gene analysis of the DE072 strain of infectious bronchitis virus: origin and evolution. Virus Genes. 22(1), 85-91. Lee C.W., Hilt D.A., Jackwood M.W. (2003). Typing of field isolates of infectious bronchitis virus based on the sequence of the hypervariable region in the S1 gene. J. Vet. Diagn Invest. 15(4), 344-348. Lee E.K., Jeon W.J., Lee Y.J., Jeong O.M., Choi J.G., Kwon J.H., Choi K.S. (2008). Genetic Diversity of Avian Infectious Bronchitis Virus Isolates in Korea Between 2003 and 2006. Avian Dis. 52(2), 332-337. Lim T.H., Kim M.S., Jang J.H., Lee D.H., Park J.K., Youn H.N., Lee J.B., Park S.Y., Choi I.S., Song, C.S. (2012). Live attenuated nephropathogenic infectious bronchitis virus vaccine provides broad cross protection against new variant strains. Poult Sci. 91(1), 89-94. Liu H.J., Lee L.H., Shih W.L., Lin M.Y., Liao, M.H. (2003). Detection of infectious bronchitis virus by multiplex polymerase chain reaction and sequence analysis. J. Virol. Methods. 109(1), 31-37. Liu S., Kong X. (2004). A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian Pathol. 33(3), 321-327. Liu S., Chen J., Kong X., Shao Y., Han Z., Feng L., Cai X., Gu S., Liu M. (2005). Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J. Gen. Virol. 86, 719-725. Liu S.W., Zhang Q.X., Chen J.D., Han Z.X., Liu X., Feng L., Shao Y.H., Rong J.G., Kong X.G., Tong G.Z. (2006a). Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004. Arch. Virol. 151(6),1133-1148. Liu G., Wang Q., Liu N., Xiao Y., Tong T., Liu S., Wu D. (2012). Infectious bronchitis virus nucleoprotein specific CTL response is generated prior to serum IgG. Vet. Immunol. Immunopathol. 148(3-4), 353-358. Lorenzen N., Lapatra S.E. (2005). DNA vaccines for aquacultured fish. Rev. Sci. Tech. 24(1), 201-213. Lu S. (2009) Heterologous prime-boost vaccination. Curr. Opin. Immunol. 21(3), 346-351. Ma H., Shao Y., Sun C., Han Z., Liu X., Guo H., Liu X., Kong X., Liu, S. (2012). Genetic diversity of avian infectious bronchitis coronavirus in recent years in China. Avian Dis. 56(1), 15-28. Machamer C.E., Mentone S.A., Rose J.K. , Farquhar M.G. (1990). The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A. 87(18), 6944-6948. Martins N.R., Mockett A.P., Barrett A.D., Cook J.K. (1991). IgM responses in chicken serum to live and inactivated infectious bronchitis virus vaccines. Avian Dis. 35(3), 470–475. Mase M., Tsukamoto K., Imai K.,Yamaguchi S. (2004). Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch. Virol. 149(10), 2069-2078. Masters P.S. (2006). The molecular biology of coronaviruses. Adv. Virus Res. 66, 193-292. Major M.E., Vitvitski L., Mink M.A., Schleef M., Whalen R.G., Trépo C., Inchauspé G. (1995). DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J. Virol. McKinley E.T., Hilt D.A., Jackwood M.W. (2008). Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine. 26(10), 1274-1284. McKinley E.T., Jackwood M.W., Hilt D.A., Kissinger J.C., Robertson J.S., Lemke C., Paterson A.H. (2011). Attenuated live vaccine usage affects accurate measures of virus diversity and mutation rates in avian coronavirus infectious bronchitis virus. Virus Res. 158(1-2), 225-234. 69(9), 5798-5805. McMartin D.A. (1968). The pathogenicity of an infectious bronchitis vims for laying hens, with observations on pathogenesis. Br. vet. J. 124(12), 576-581. Mondal S.P., Lucio-Martinez B., Naqi S.A. (2001). Isolation and characterization of a novel antigenic subtype of infectious bronchitis virus serotype DE072. Avian Dis. 45(4), 1054-1059. Mourez T., Vabret A., Han Y., Dina J., Legrand L., Corbet S., Freymut F. (2007). Baculovirus expression of HCoV-OC43 nucleocapsid protein and development of a Western blot assay for detection of human antibodies against HCoV-OC43. J. Virol. Methods. 139(2), 175-180. Oomen C.J., Hoogerhout P., Bonvin A.M., Kuipers B., Brugghe H., Timmermans H., Haseley S.R., van Alphen L., Gros P. (2003) Immunogenicity of peptide-vaccine candidates predicted by molecular dynamics simulations. J. Mol. Biol. 328(5), 1083-1089. Otsuki K., Huggins M.B., Cook J.K. (1990). Comparison of the susceptibility to infectious bronchitis virus infection of two inbred lines of White Leghorn chickens. Avian Pathol. 19(3), 467-475. Owen R.L., Cowen B.S., Hattel A.L., Naqi S.A., Wilson R.A. (1991). Detection of viral antigen following exposure of one-day-old chickens to the Holland 52 strain of infectious bronchitis virus. Avian Pathol. 20(4), 663-673. Pei J., Sekellick M.J., Marcus P.I., Choi I.S., Collisson E.W. (2001). Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J. Interferon Cytokine Res. 21(12), 1071-1077. Peng B., Chen H., Tan Y., Jin M., Chen H., Guo A. (2006). Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro. Sci. China C Life Sci. 49(2), 158-163. Pensaert M., Lambrechts C. (1994). Vaccination of chickens against a Belgian nephropathogenic strain of infectious bronchitis virus B1648 using attenuated homologous and heterologous strains. Avian Pathol. 23(4), 631-641. Pohl R. (1974). The histopathogenesis of nephrosisnephritis syndrome. Avian Pathol. 3(1), 1-13. Powell K. (2004). DNA vaccines--back in the saddle again? Nat. Biotechnol. 22(7), 799-801. Purcell D.A., McFerran J.B. (1972). The histopathology of infectious bronchitis in the domestic fowl. Res. vet. Sci. 13(2), 116-122. Purcell D.A., Tham V.L., Surman P.G. (1976). The histopathology of infectious bronchitis in fowls infected with a nephrotropic 'T' strain of virus. Aust. Vet J. 52(2), 85-91. Purcell A.W., McCluskey J., Rossjoh J. (2007). More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 6(5), 404-414. Raggi L.G., Lee G.G. (1965). Lack of correlation between infectivity serological response and challenge results in immunization with an avian infectious bronchitis vaccine. J. Immunol. 94, 538-543. Raj G.D., Jones R.C. (1997). Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol. 26(4), 677-706. Ramshaw I.A., Ramsay A.J. (2000). The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today. 21(4), 163-165. Rosenberger J.K., Alphin R.L., Krauss W.S. (1976). Cross-protection studies with a Holland strain (Noblis H-52) of Infectious bronchitis virus. Avian Dis. 20, 199-201. Schultze B., Cavanagh D., Herrler G. (1992). Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes. Virology. 189(2), 792-794. Seah J.N., Yu L., Kwang J. (2000). Location of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet. Microbiol. 75(1), 11-16. Seo S.H., Wang L., Smith R., Collisson E.W. (1997). The carboxylterminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J.Virol. 71(10), 7889-7894. Seo S.H., Pei J., Briles W.E., Dzielawa J., Collisson E.W. (2000). Adoptive transfer of infectious bronchitis virus primed alphabeta T cells bearing CD8 antigen protects chicks from acute infection. Virology. 269(1), 183-189. Sevoian M., Levine P.P. (1957). Effects of infectious bronchitis on the reproductive tracts, egg production, and egg quality of laying chickens. Avian Dis. 1, 136-164. Shimazaki Y., Watanabe Y., Harada M., Seki Y., Kuroda Y., Fukuda M., Honda E., Suzuki S., Nakamura S. (2009). Genetic Analysis of the S1 Gene of 4/91 Type Infectious Bronchitis Virus Isolated in Japan. J. Vet. Med. Sci. 71 (5), 583-588. Siller W.G., Cumming R.B. (1974). The histopathology of an interstitial nephritis in the fowl produced experimentally with infectious bronchitis virus. J. Pathol. Bacteriol. 114(3), 163-173. Sjaak de Wit J.J., Cook J.K., van der Heijden H.M. (2011). Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol. 40(3), 223-235. Smith H.W., Cook J.K., Parsell Z.E. (1985). The experimental infection of chickens with mixtures of infectious bronchitis virus and Escherichia coli. J. Gen. Virol. 66, 777-786. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E. (2003). Unique and conserved features of genome and proteonome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331(5), 991-1004. Song C.S., Lee Y.J., Kim J.H., Sung H.W., Lee C.W., Izumiya Y., Miyazawa T., Jang H.K., Mikami T. (1998). Epidemiological classification of infectious bronchitis virus isolated in Korea between 1986 and 1997. Avian Pathol. 27(4), 409-416. Strugnell R.A., Drew D., Merciece J., DiNatale S., Firez N., Dunstan S.J., Simmons C.P., Vadolas J. (1997). DNA vaccine for bacterial infections. Immunol. Cell Biol. 75, 364-369. Surjit M., Liu B., Chow V.T., Lal S.K. (2006). The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 281(16), 10669-10681. Tacket C.O., Roy M.J., Widera G., Swain W.F., Broome S., Edelman R. (1999). Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine. 17(22), 2826-2829. Tang M., Wang H., Zhou S., Tian G. (2008). Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J. Virol. Methods. 149(1), 42-48. Terregino C., Toffan A., Beato M.S., De Nardi R., Vascellari M., Meini A. Ortali G., Mancin M., Capua I. (2008). Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes. Avian Pathol. 37(5), 487-493. Tseng Y.T., Wang S.M., Huang K.J., Lee A.I., Chiang C.C., Wang C.T. (2010). Self-assembly of severe acute respiratory syndrome coronavirus membrane protein. J. Biol. Chem. 285(17), 12862-12872. Vandekerchove D., Herdt P.D., Laevens H., Butaye P., Meulemans G., Pasmans F. (2004). Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis-associated mortality. Avian Pathol. 33(3), 298-302. Vijaykrishna D., Smith G.J., Zhang J.X., Peiris J.S., Chen H., Guan Y. (2007). Evolutionary insights into the ecology of coronaviruses. J. Virol. 81(8), 4012-4020. Wang C.H., Tsai C. T. (1996). Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan. Arch. Virol. 141(9), 1677-1688. Wang H.N., Wu Q.Z., Huang Y., Liu P. (1997). Isolation and identification of infectious bronchitis virus from chickens in Sichuan, China. Avian Dis. 41(2), 279 -282. Wang S., Parker C., Taaffe J., Solórzano A., García-Sastre A., Lu S. (2008). Heterologous HA DNA vaccine prime-inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine. 26(29-30), 3626–3633. Wang Y.F., Sun Y.K., Tian Z.C., Shi X.M., Tong G.Z., Liu S.W., Zhi H.D., Kong X.G.,Wang M. (2009). Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma. Vaccine. 27(50), 7046-7052. Weiss S.R., Navas M.S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 69, 635-664. Winter C., Schwegmann-WeBels C., Cavanagh D., Neumann U., Herrler G. (2006). Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J. Gen. Virol. 87, 1209-1216. Winter C., Herrler G., Neumann U. (2008). Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent. Microbes and Infection. 10, 367-373. Winterfield R.W. Fadly A.M. (1975). Potential for polyvalent infectious bronchitis vaccines. Am. J. Vet. Res. 36, 524-526. Winterfield R.W., Fadly A.M., Hoerr F.J. (1976). Vaccination and revaccination with a Holland (H) strain of infectious bronchitis virus. Avian Dis. 20(2), 369-374. Winterfield R.W., Thacker H.L., Badylak S.F. (1984). Effects of subtype variations in the Holland strain of infectious bronchitis virus when applied as a vaccine. Poult. Sci. 63(2), 248-250. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science. 247, 1465-1468. Woo P.C., Lau S.K., Yuen K.Y. (2006). Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr. Opin. Infect. Dis. 19(5), 401-407. Woodland D.L. (2004). Jump-starting the immune system: prime-boosting comes of age. Trends Immunol. 25(2), 98-104. Worthington K.J., Currie R.J., Jones R.C. (2008). A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathol. 37(3), 247-257. Wu Z.Q., Yang Q.W., Fu C., Zhao X.Y., Ignjatovic J. (1998). Antigenic and immunogenic characterization of infectious bronchitis virus strains isolated in China between 1986 and 1995. Avian Pathol. 27(6), 578 -585. Youn S., Leibowitz J.L., Collisson E.W. (2005). In vitro assembled recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology. 332(1), 206–215. Yu L., Jiang Y., Low S., Wang Z., Nam S.J., Liu W., Kwang, J. (2001). Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens. Avian Dis. 45(2), 416-424. Wang Y.D., Wang Y.L., Zhang Z.C., Fan G.C., Jiang Y.H., Liu X.E., Ding J., Wang S.S. (1998). Isolation and identification of glandular stomach type IBV (QX IBV) in chickens. Chinese Journal of Animal Quarantine.15(1), 1-13. Zhang D.Y., Zhou J.Y., Fang J., Hu J., Wu J.X., Mu A.X. (2005). An ELISA for antibodies to infectious bronchitis virus based on nucleocapsid protein produced in Escherichia coli. Vet. Med. 8, 336-344. Zhang X., Hasoksuz M., Spiro D., Halpin R., Wang S., Vlasova A., Janies D., Jones L.R., Ghedin E., Saif L.J. (2007). Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology. 363(1), 1-10. Ziebuhr J., Theil V., Gorbalenya A.E. (2001). The autolytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogus papin-like proteinase that cleave the same peptide bond. J. Biol. Chem. 276(35), 33220-33232.
摘要: Infectious bronchitis virus (IBV) is a highly contagious chicken disease, making a severe economic impact on poultry industry. The IBV genome encodes four structural proteins, known as the spike (S) glycoprotein, the envelope (E) protein, the membrane (M) glycoprotein, and the nucleocapsid (N) protein. The objective of this study is to apply the strategy of the DNA prime-protein boost vaccination to enhance the immunity and protection efficacy in chickens against IBV challenge. Three DNA plasmids containing S1, M or N gene were constructed and demonstrated to express related proteins by immunofluorescence assay and Western blotting. Chickens were vaccinated prior to three weeks of age by using DNA vaccines, subunit vaccines and DNA prime-protein boost strategy in three trials, respectively. Chickens were challenged at 5 weeks of age and observed for one week. Sera were collected weekly and anti-IBV antibody titers were detected by commercial IBV ELISA kit. The kidney lesion score was given to each chicken from 0 to 3 according to the increasing severity. In Trial I, chickens receiving DNA plasmids containing pTriEx-S1+pTriEx-N, or pTriEx-S1+pTriEx-M+pTriEx-N had higher antibody titers besides the commercial killed vaccine before challenge. However, the best protection efficacy in chickens injected with three doses of DNA containing S1 gene had 100 % protection with lesion score of 0.8. In Trial II, neither S1 nor N protein could provide protection efficacy higher than 40%. In Trial III, home-made killed vaccine prepared by inactivating IBV with formaldehyde was also compared along with subunit proteins. Chickens receiving killed vaccines showed higher anti-IBV antibody titers. Chickens primed with DNA containing S1 gene at one week of age and boosted with S1subunit protein at three weeks of age showed the highest protection efficacy with 100 % protection. In conclusion, DNA prime-protein boost vaccination provided a new efficacious strategy in chickens against IBV infection.
雞傳染性支氣管炎病毒 (Infectious bronchitis virus, IBV) 是一種高度傳染性的病毒,雞感染此病毒會造成家禽業嚴重的經濟損失。IBV 有四個主要的結構蛋白,分別為棘突蛋白(Spike glycoprotein,S)、封套蛋白(Envelope protein,E)、膜蛋白(Membrane glycoprotein,M),核蛋白(Nucleocapsid protein,N)。本研究的目的是應用 DNA prime-protein boost 策略,以加強雞隻對抗 IBV 的免疫力和保護力。將 IBV 以反轉錄聚合酶鏈鎖反應分別增幅出 S1、M 和 N 三個基因片段,再進而選殖至可於真核及原核細胞表現之載體 pTriEx-3 上,構築出 pTriEx-S1、pTriEx-M和 pTriEx-N 重組質體。以間接螢光免疫分析確定轉染至 DF-1 細胞的各重組質體可被正確的表現出各自之重組蛋白,並以西方墨點法分析,確認含有各重組質體的 E.coli 亦可被誘導表現出重組蛋白,之後將製備之 DNA 疫苗和次單疫苗進行動物試驗。在雞隻 3 周齡以前,分別免疫 DNA 疫苗和次單疫苗與使用 DNA prime- protein boost 策略,共進行三次動物實驗;在雞隻 5 周齡時進行攻毒,並於攻毒後一周進行犧牲。每周採集血液樣本以市售 ELISA 試劑檢測抗 IBV 抗體。腎臟損傷評分按照嚴重程度給予,分數從 0 (正常)到 3 (腫大及尿酸鹽沉積)。第一次動物實驗結果顯示除了免疫市售不活化疫苗之外,免疫 pTriEx-S1+ pTriEx-N 及pTriEx-S1+ pTriEx-M+ pTriEx-N 組別的雞隻,在攻毒前能檢測到較高的抗體力價;然而,最好的保護功效表現在雞隻免疫 pTriEx-S1 重組質體組,其腎臟病變指數為 0.8 且保護力為 100%。第二次動物實驗結果顯示免疫 S1 與 N 次單位疫苗提供之保護力只有 40%。在第三次動物實驗將自製不活化 IBV 疫苗與次單位疫苗相比較,結果顯示免疫自製不活化 IBV 疫苗的雞隻表現出較高的抗 IBV 抗體力價;雞隻先免疫 S1 DNA 疫苗再使用 S1 次單位疫苗進行補強的組別有最高的保護效果(100%)。因此,首次免疫 S1 DNA 疫苗再使用 S1 次單位疫苗補強,可以提升雞隻對抗 IBV 的免疫力及保護效力。實驗結果證實,DNA prime-protein boost 策略是個可以有效提升雞隻對抗 IBV 感染之免疫策略。
URI: http://hdl.handle.net/11455/93086
文章公開時間: 2018-07-16
Appears in Collections:微生物暨公共衛生學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.