Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/93087
標題: Evaluating Engineered Cytokines as Adjuvants for Newcastle Disease Vaccine
評估改造之細胞素做為家禽新城病疫苗佐劑
作者: 賴鈺雅
Yu-Ya Lai
關鍵字: 新城病毒
細胞素
疫苗
佐劑
NDV
cytokine
vaccine
adjuvant
引用: 蔡淑婷 (2003). C 蛋白之重組表現與應用. 國立中興大學微生物暨公共衛生學研 究所. 台中. 中華民國 吳佩珊 (2008). 雞CD40L 及趨化素之研究. 國立中興大學微生物暨公共衛生學研 究所. 台中. 中華民國 周偉聖 (2009). 發展新城疫病疫苗之細胞素佐劑. 國立中興大學微生物暨公共 衛生學研究所. 台中. 中華民國 林佩樺 (2011). 開發傳染性支氣管炎疫苗之細胞素佐劑. 國立中興大學微生物 暨公共衛生學研究所. 台中. 中華民國 黃智佑 (2012). 表現免疫調節蛋白及家禽IBV S1 次單位. 國立中興大學微生物暨 公共衛生學研究所. 台中. 中華民國 Ahlers JD, Belyakov IM, Matsui S, Berzofsky JA. 2001. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int Immunol. 3:897‐908. Aitken ID, Survashe BD. 1974. Observations on the serological and dermal responses of turkeys to a single subcutaneous inoculation of inactivated Newcastle disease vaccine in mineral oil adjuvant. Avian Pathol. 3:211‐222. Alexander DJ . 2000. Newcastle disease and other avian paramyxoviruses. Rev. Sci. Tech. 19:443–462 Alexander DJ. 2003. Newcastle disease, other avian paramyxoviruses, and pneumovirus infections, In Saif JM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (ed), Diseases of poultry, 11th ed. Iowa State University Press, Ames, IA. p 63–99. Asif M, Jenkins KA, Hilton LS, Kimpton WG, Bean AG, Lowenthal JW. 2004. Cytokines as adjuvants for avian vaccines. Immunol Cell Biol. 82:638‐643. Bhadra R, Gigley JP, Khan IA. 2011. Cutting edge: CD40‐CD40 ligand pathway plays a critical CD8‐intrinsic and ‐extrinsic role during rescue of exhausted CD8 T cells. J Immunol. 187:4421‐4425. Byarugaba DK, Mugimba KK, Omony JB, Okitwi M, Wanyana A, Otim MO, Kirunda H, Nakavuma JL, Teillaud A, Paul MC, Ducatez MF. 2014. High pathogenicity and low genetic evolution of avian paramyxovirus type I isolated from live bird markets in Uganda. Virol J. 11: 173. Clark EDB. 2001. Protein refolding for industrial processes. Current Opinion in Biotechnology. 12:202‐207. Corbanie EA, Remon JP, Van Reeth K, Landman WJ, van Eck JH, Vervaet C. 2007. Spray drying of an attenuated live Newcastle disease vaccine virus intended for respiratory mass vaccination of poultry. Vaccine. 25:8306‐8317. Cornax I, Miller PJ, Afonso CL. 2012. Characterization of live LaSota vaccine straininduced protection in chickens upon early challenge with a virulent Newcastle disease virus of heterologous genotype. Avian Dis. 56:464‐470. Cowan ML, Monks DJ, Raidal SR. 2014. Granuloma formation and suspected neuropathic pain in a domestic pigeon (Columba livia) secondary to an oil‐based, inactivated Newcastle disease vaccine administered for protection against pigeon paramyxovirus‐1. Aust Vet J. 92:171‐176. Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H. 1996. Interferon‐gamma‐inducing factor, a novel cytokine, enhances Fas ligand‐mediated cytotoxicity of murine T helper 1 cells. Cell Immunol. 173:230‐235. de Leeuw, O.S., Hartog, L., Koch, G., Peeters, B.P., 2003. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non‐virulent cleavage site mutants revert to virulence after one passage in chicken brain. J. Gen. Virol. 84, 475–484. de Leeuw, O.S., Koch, G., Hartog, L., Ravenshorst, N., Peeters, B.P., 2005. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin‐neuraminidase protein. J. Gen. Virol. 86, 1759–1769. Diel DG, da Silva LHA, Liu H, Wang Z, Miller PJ et al. 2012. Genetic diversity of avian paramyxovirus type 1: Proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol 12: 1770‐1779. Dinarello CA. 2000. Proinflammatory cytokines. Chest. 118:503‐508. Dortmans JC, Peeters BP, Koch G. 2012. Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? Vet Microbiol. 160:17‐22. Erickson LD, Durell BG, Vogel LA, O'Connor BP, Cascalho M, Yasui T, Kikutani H, Noelle RJ. 2002. Short‐circuiting long‐lived humoral immunity by the heightened engagement of CD40. J Clin Invest. 109:613‐620. Fan X, Hashem AM, Chen Z, Li C, Doyle T, Zhang Y, Yi Y, Farnsworth A, Xu K, Li Z, He R, Li X, Wang J. 2014. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol. 8:211‐220. Foster JR. 2001. The functions of cytokines and their uses in toxicology. Int J Exp Pathol. 82: 171–192. Goodbourn S, Didcock L, Randall RE. 2000. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. J Gen Virol. 81:2341‐2364. Graf D, Müller S, Korthäuer U, van Kooten C, Weise C, Kroczek RA. 1995. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 25:1749‐1754. Harold F, Stills J. 2005. Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund's Complete and Other Adjuvants. ILAR Journal. 46:280–293. Haswell LE, Glennie MJ, Al‐Shamkhani A. 2001. Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol. 31:3094‐3100. Hu, S., Ma, H., Wu, Y., Liu, W., Wang, X., Liu, Y., Liu, X., 2009. A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 27, 904–910. Huub F. J. Savelkoul, Valerie A. Ferro, Marius M. Strioga and Virgil E. J. C. Schijns. 2015. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines. 3, 148‐171. Huyge K, Van Reeth K, De Beer T, Landman WJ, van Eck JH, Remon JP, Vervaet C. 2011. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry. Eur J Pharm Biopharm. 80:649‐656. Johnson S, Zhan Y, Sutherland RM, Mount AM, Bedoui S, Brady JL, Carrington EM, Brown LE, Belz GT, Heath WR, Lew AM. 2009. Selected Toll‐like receptor ligands and viruses promote helper‐independent cytotoxic T cell priming byupregulating CD40L on dendritic cells. Immunity. 30:218‐227. Kim SH, Nanchaya Wanasen, Anandan Paldurai, Sa Xiao, Peter L. Collins, and Siba K. Samal. 2013. Newcastle Disease Virus Fusion Protein Is the Major Contributor to Protective Immunity of Genotype‐Matched Vaccine. PLoS One. 8: e74022. Kumar N. 1985. Phase separation in Triton X‐114 of antigens of transmission blocking immunity in Plasmodium gallinaceum. Mol Biochem Parasitol. 17:343‐358. Kumar S, Ahi YS, Salunkhe SS, Koul M, Tiwari AK, Gupta PK, Rai A. 2009. Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL‐2. Vaccine. 27:864‐869. Lee SH, Lillehoj HS, Jang SI, Baldwin C, Tompkins D, Wagner B, Parcells M, Del Cacho E, Hong YH, Min W, Lillehoj EP. 2011. Development and characterization of mouse monoclonal antibodies reactive with chicken interleukin‐2 receptor αlpha chain (CD25). Vet Immunol Immunopathol. 144:396‐404. Leroux‐Roels G. 2010. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 28 Suppl 3:C25‐36. Liu CG, Liu M, Liu F, Liu da F, Zhang Y, Pan WQ, Chen H, Wan CH, Sun EC, Li HT, Xiang WH. 2011. Evaluation of several adjuvants in avian influenza vaccine to chickens and ducks. Virol J. 8:321. Mebatsion, T., Verstegen, S., de Vaan, L.T., Romer‐Oberdorfer, A., Schrier, C.C., 2001. A recombinant Newcastle disease virus with low‐level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J. Virol. 75, 420–428. Miller PJ, Kim LM, Ip HS, Afonso CL. 2009. Evolutionary dynamics of Newcastle disease virus. Virology. 391:64‐72. Miller PJ, Decanini EL, Afonso CL. 2010. Newcastle disease: evolution of genotypes and the related diagnostic challenges. Infect. Genet. Evol. 10:26–35. Minor PD. 2015. Live attenuated vaccines: Historical successes and current challenges. Virology. 479‐480C:379‐392. Mohan T, Verma P, Rao DN. 2013. Novel adjuvants & delivery vehicles for vaccines development: A road ahead. Indian J Med Res. 138:779‐795. Nadeau PJ, Roy A, Gervais‐St‐Amour C, Marcotte MÈ, Dussault N, Néron S. 2012. Modulation of CD40‐activated B lymphocytes by N‐acetylcysteine involves decreased phosphorylation of STAT3. Mol Immunol. 49:582‐592. Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK. 2004. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog. 36:1– 10. Park JH, Sung HW, Yoon BI, Kwon HM. 2009. Protection of chicken against very virulent IBDV provided by in ovo priming with DNA vaccine and boosting with killed vaccine and the adjuvant effects of plasmid‐encoded chicken interleukin‐2 and interferongamma. J Vet Sci. 10:131‐139. Petrovsky N, Aguilar JC. 2004. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 82:488‐496. Portuondo DL, Ferreira LS, Urbaczek AC, Batista‐Duharte A, Carlos IZ. 2015. Adjuvants and delivery systems for antifungal vaccines: current state and future developments. Med Mycol. 53:69‐89. Ramshaw IA, Ramsay AJ. 2000. The prime‐boost strategy: exciting prospects for improved vaccination. Immunol Today. 21:163‐165. Raul Elgueta, Micah J. Benson, Victor C. de Vries, Anna Wasiuk, Yanxia Guo, and Randolph J. Noelle. 2009. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 229: 10.1111. Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5:172. Rubin JT. 1995. Interleukin‐2: its rationale and role in the treatment of patients with cancer. Cancer Treat Res. 80:83‐105. Samal SK. 2011. The biology of paramyxoviruses, 1st ed, Caister Academic Press, Norfolk, United Kingdom, p 69–114. Samal S, Kumar S, Khattar SK, Samal SK. 2011. A single amino acid change, Q114R, in the cleavage‐site sequence of Newcastle disease virus fusion proteinattenuates viral replication and pathogenicity. J Gen Virol. 92:2333‐2338. Sachin Kumar, Baibaswata Nayak, Peter L. Collins, and Siba K. Samal. 2011. Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens. J Virol. 85: 6521–6534. Sarfati‐Mizrahi D, Lozano‐Dubernard B, Soto‐Priante E, Castro‐Peralta F, Flores‐Castro R, Loza‐Rubio E, Gay‐Gutiérrez M. 2010. Protective dose of a recombinant Newcastle disease LaSota‐avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels. Avian Dis. 54:239‐241. Schauenstein K, Globerson A, Wick G. 1982. Avian lymphokines: 1. Thymic cell growth factor in supernatants of mitogen stimulated chicken spleen cells. Dev Comp Immunol. 6:533‐540. Schnetzler M, Oommen A, Nowak JS, Franklin RM. 1983. Characterization of chicken T cell growth factor. Eur J Immunol. 13:560‐566. Shen H, Xue C, Lv L, Wang W, Liu Q, Liu K, Chen X, Zheng J, Li X, Cao Y. 2013. Assembly and immunological properties of a bivalent virus‐like particle (VLP) for avian influenza and Newcastledisease. Virus Res. 178:430‐436. Shin Sasaki, Kenji Okuda. 2000. The Use of Conventional Immunologic Adjuvants in DNA Vaccine Preparations. DNA Vaccines : Methods in Molecular Medicine™ Volume 29, 2000, pp 241‐249. Susta L, Cornax I, Diel DG, Garcia SC, Miller PJ, Liu X, Hu S, Brown CC, Afonso CL. 2013. Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens. Microb Pathog. 61‐62:73‐83. Tarpey I, Davis PJ, Sondermeijer P, van Geffen C, Verstegen I, Schijns VE, Kolodsick J, Sundick R. 2007. Expression of chicken interleukin‐2 by turkey herpesvirus increases the immune response against Marek's disease virus but fails to increase protection against virulent challenge. Avian Pathol. 36:69‐74. Teng QY, Zhou JY, Wu JJ, Guo JQ, Shen HG. 2006. Characterization of chicken interleukin 2 receptor alpha chain, a homolog to mammalian CD25. FEBS Lett. 580:4274‐4281. Thompson AL, Staats HF. 2011. Cytokines: the future of intranasal vaccine adjuvants. Clin Dev Immunol. 2011:289597. Tovey MG, Lallemand C. 2010. Adjuvant Activity of Cytokines. Vaccine Adjuvants : Methods in Molecular Biology Volume 626, 2010, pp 287‐309 van Boven, M., Bouma, A., Fabri, T.H., Katsma, E., Hartog, L., Koch, G., 2008. Herd immunity to Newcastle disease virus in poultry by vaccination. Avian Pathol. 37, 1–5. Verardi PH, Legrand FA, Chan KS, Peng Y, Jones LA, Yilma TD. 2014. IL‐18 Expression Results in a Recombinant Vaccinia Virus That Is Highly Attenuated and Immunogenic. J Interferon Cytokine Res. 34:169‐178. Wang J, Wang L, Lin Z, Tao L, Chen M. 2014. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene‐modified lung tumor cells. Mol Med Rep. 9:125‐131. Woodberry T, Gardner J, Elliott SL, Leyrer S, Purdie DM, Chaplin P, Suhrbier A. 2003. Prime Boost Vaccination Strategies: CD8 T Cell Numbers, Protection, and Th1 Bias. J Immunol. 170:2599‐2604. Woodward HL, Tudor DC. 1975. A skim milk stabilized water vaccine for Newcastle disease (B1‐type LaSota): its effectiveness under modern commercial cage layer methods of delivery. Poult Sci. 54:866‐871. Wykes M. 2003. Why do B cells produce CD40 ligand? Immunol Cell Biol. 81:328‐331. Yin G, Lin Q, Qiu J, Qin M, Tang X, Suo X, Huang Z, Liu X. 2015. Immunogenicity and protective efficacy of an Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and chicken CD40 ligand. Vet Parasitol. 210:19‐24. Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, Jin Z, Cui S. 2014. Chitosan‐coated poly(lactic‐co‐glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine. 9:4609‐4619.
摘要: Newcastle disease is an important and highly contagious avian disease affecting poultry species and wild birds around the world, leading to serious economic losses. It is caused by the Avian Paramyxovirus type 1 (APMV‐1), also known as Newcastle disease virus (NDV). To develop effective and safe vaccines against NDV and other avian diseases, immunomodulatory cytokines can be good candidates for vaccine adjuvants. In our previous study, we engineered and constructed recombinant chicken interleukin‐2 (chIL‐2) and soluble CD40 ligand (sCD40L) with significantly enhanced activities, designated respectively as chIL‐2enh and sCD40Lenh. In this study, we evaluated the adjuvanticity of chIL‐2enh and sCD40Lenh. Specific pathogen free (SPF) chickens were inoculated with a live attenuated ND vaccine (LaSota strain) plus chIL‐2enh or sCD40Lenh. Chickens receiving ND vaccine plus chIL‐2enh or sCD40Lenh elicited higher hemagglutination inhibition (HI) titers than the vaccine control group, and survived well from virulent NDV (Sato strain) challenge. After virus challenge, we extracted RNA from various tissues of chickens, and employed reverse transcriptionpolymerase chain reaction (RT‐PCR) to detect challenged virus. Among vaccinated groups, the group co‐administered with chIL‐2enh or sCD40Lenh cleared Sato virus rapidly at day 3 post‐challenge. We further performed nested RT‐PCR to detect IFN‐γ and IL‐18 mRNAs in various tissues. The results showed that the vaccinated groups coadministered with chIL‐2enh or sCD40Lenh had higher IFN‐γ and IL‐18 mRNAs levels than vaccinated control group, indicating that both chIL‐2enh and sCD40Lenh could stimulate cellular immune response among vaccinated chickens. Overall, these results indicate that the engineered chIL‐2enh and sCD40Lenh may increase the efficacy of ND vaccine,and would serve as adjuvants in the future.
新城疫病(Newcastle disease, ND)是感染全球禽類的一個重要疾病,至今仍有諸多疫情傳出,造成嚴重的經濟損失。新城病是由禽類副黏液病毒血清型第一型(avian paramyxovirus serotype 1, APMV‐1)所導致,又稱新城病毒(Newcastle disease virus, NDV)屬於副黏液病毒科(Paramyxoviridae)中的禽腮腺炎病毒屬(Avulavirus)。 細胞素則是一群能在生物體中傳遞訊息之蛋白,其中具有免疫調節功能之細胞素很有潛力被開發成為安全環保的疫苗佐劑用以對抗新城病或是其他禽類疾病。在我們先前的研究中,我們改造並構築表現雞的重組蛋白介白素‐2 (interleukin‐2,rchIL‐2)及CD40 配體的胞外區域(CD40 ligand extracellular domain, rchCD40L‐Exc) , 其免疫活性皆有顯著的增進,將之分別命名為chIL‐2enh 以及sCD40Lenh。在本研究中,我們評估chIL‐2enh 以及sCD40Lenh 做為疫苗佐劑之功效,將無特定病原(specific pathogen free, SPF)雞隻接種活減毒新城疫苗(LaSota 株)並配合施予細胞素重組蛋白佐劑,結果顯示接種疫苗添加重組蛋白chIL‐2enh 或sCD40Lenh 佐劑之組別可引 發良好之血球凝集抑制(hemagglutination inhibition, HI)抗體反應,且在強毒佐藤株攻毒後皆存活下來。攻毒後抽取雞隻各臟器之RNA,以反轉錄聚合酶鏈鎖反應(reverse transcription‐polymerase chain reaction, RT‐PCR)偵測病毒殘留,與疫苗對照組相比下,添加chIL‐2enh 或sCD40Lenh 於疫苗之組別在攻強毒後三天即可較快 速的清除體內之佐藤株病毒。此外,使用專一性引子進行nested RT‐PCR 檢測細胞性免疫反應相關之丙型干擾素(interferon‐γ, IFN‐γ)與介白素‐18 (interleukin‐18,IL‐18)在不同臟器之表現情形,結果接種添加chIL‐2enh 或是sCD40Lenh 之組別,IFN‐γ 表現量平均值皆高於疫苗組別,IL‐18 在sCD40Lenh 之組別平均值也是優於疫苗 組。總結以上研究,使用改造的雞細胞素重組蛋白chIL‐2enh 或是sCD40Lenh 皆可增強新城疫苗的功效,預期將來可開發做為好的疫苗佐劑。
URI: http://hdl.handle.net/11455/93087
文章公開時間: 10000-01-01
Appears in Collections:微生物暨公共衛生學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.