Please use this identifier to cite or link to this item:
標題: Surface protein expression and characterization of norovirus GII.11 from Taiwan local strain of swine
作者: 林宜瑾
I-Chin Lin
關鍵字: 諾羅病毒
P domain
引用: 1. Adler, J.L. and R. Zickl, Winter vomiting disease. J Infect Dis, 1969. 119(6): p. 668-73. 2. Xi, J.N., et al., Norwalk virus genome cloning and characterization. Science, 1990. 250(4987): p. 1580-3. 3. Duizer, E., et al., Laboratory efforts to cultivate noroviruses. J Gen Virol, 2004. 85(Pt 1): p. 79-87. 4. Blazevic, V. et al., Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine 29 (2011) 8126– 8133 5. Koho, T. et al., Purification of norovirus-like particles (VLPs) by ion exchange chromatography. Journal of Virological Methods 181 (2012) 6– 11 6. Zheng, D.P., et al., Norovirus classification and proposed strain nomenclature. Virology, 2006. 346(2): p. 312-23. 7. Strasser, B.J., Collecting, Comparing, and Computing Sequences: The Making of Margaret O.Dayhoff's Atlas of Protein Sequence and Structure, 1954-1965. Journal of the History of Biology, 2010. 43(4): p. 623-660. 8. Xia, M., T. Farkas, and X. Jiang, Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. Journal of Medical Virology, 2007. 79(1): p. 74-83. 9. Ball, J.M., et al., Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. Journal of Virology, 1998. 72(2): p. 1345-1353. 10. Edwards, A.W.F., The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Systematic Biology, 1996. 45(1): p. 79-91. 11. Tan, M., et al., E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. Journal of Medical Virology, 2004. 74(4): p. 641-649. 12. Dolin, R., et al., Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis, 1971. 123(3): p. 307-12. 13. Graham, D.Y., et al., Norwalk virus infection of volunteers: new insights based on improved assays. J Infect Dis, 1994. 170(1): p. 34-43. 14. Mounts, A.W., et al., Cold weather seasonality of gastroenteritis associated with Norwalk-like viruses. J Infect Dis, 2000. 181 Suppl 2: p. S284-7. 15. Blanton, L.H., et al., Molecular and epidemiologic trends of caliciviruses associated with outbreaks of acute gastroenteritis in the United States, 2000-2004. J Infect Dis, 2006. 193(3): p. 413-21. 16. Vinje, J., S.A. Altena, and M.P. Koopmans, The incidence and genetic variability of small round-structured viruses in outbreaks of gastroenteritis in The Netherlands. J Infect Dis, 1997. 176(5): p. 1374-8. 17. Maguire, A.J., et al., Molecular epidemiology of outbreaks of gastroenteritis associated with small round-structured viruses in East Anglia, United Kingdom, during the 1996-1997 season. J Clin Microbiol, 1999. 37(1): p. 81-9. 18. Iritani, N., et al., Major change in the predominant type of 'Norwalk-like viruses' in outbreaks of acute nonbacterial gastroenteritis in Osaka City, Japan, between April 1996 and March 1999. Journal of Clinical Microbiology, 2000. 38(7): p. 2649-2654. 19. Marshall, J.A., A. Dimitriadis, and P.J. Wright, Molecular and epidemiological features of norovirus-associated gastroenteritis outbreaks in Victoria, Australia in 2001. J Med Virol, 2005. 75(2): p. 321-31. 20. Buesa, J., et al., Molecular epidemiology of caliciviruses causing outbreaks and sporadic cases of acute gastroenteritis in Spain. J Clin Microbiol, 2002. 40(8): p. 2854-9. 21. Scipioni, A., et al., Animal noroviruses. Vet J, 2008. 178(1): p. 32-45. 22. Wang, Q.H., et al., Porcine noroviruses related to human noroviruses. Emerg Infect Dis, 2005. 11(12): p. 1874-8 23. Strasser, B.J., Collecting, Comparing, and Computing Sequences: The Making of Margaret O.Dayhoff's Atlas of Protein Sequence and Structure, 1954-1965. Journal of the History of Biology, 2010. 43(4): p. 623-660. 24. Sugieda, M., et al., Detection of Norwalk-like virus genes in the caecum contents of pigs. Archives of Virology, 1998. 143(6): p. 1215-1221. 25. Reuter, G., H. Biro, and G. Szucs, Enteric caliciviruses in domestic pigs in Hungary. Arch Virol, 2007. 152(3): p. 611-4. 26. Mauroy, A., et al., Noroviruses and sapoviruses in pigs in Belgium. Archives of Virology, 2008. 153(10): p. 1927-1931. 27. Keum, H.O., et al., Porcine noroviruses and sapoviruses on Korean swine farms. Arch Virol, 2009. 154(11): p. 1765-74. 28. Shen, Q., et al., Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Archives of Virology, 2009. 154(10): p. 1625-1630. 28. L'Homme, Y., et al., Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005-2007. Arch Virol, 2009. 154(4): p. 581-93. 29. Cunha, J.B., et al., Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch Virol, 2010. 155(8): p. 1301-5. 30. Wolf, S., et al., Molecular detection of norovirus in sheep and pigs in New Zealand farms. Vet Microbiol, 2009. 133(1-2): p. 184-9. 31. Cunha, J.B., et al., First detection of porcine norovirus GII.18 in Latin America. Research in Veterinary Science, 2010. 89(1): p. 126-129. 32. Wang, Q.H., et al., Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. Journal of Clinical Microbiology, 2006. 44(6): p. 2057-2062. 33. Nakamura, K., et al., Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. J Clin Microbiol, 2010. 48(4): p. 1215-22. 34. Mattison, k. et al., Human Noroviruses in Swine and Cattle. Emerging Infectious Diseases, 2007. 13 (8) 35. Yu. J.M. et al., Candidate Porcine Kobuvirus, China. Emerging Infectious Diseases, 2009. 15(5) 36. Mesquita, J.R. et al. Novel Norovirus in Dogs with Diarrhea. Emerging Infectious Diseases, 2010. 13(5) 37. Cheetham, S. et al., Binding Patterns of Human Norovirus-Like Particles to Buccal and Intestinal Tissues of Gnotobiotic Pigs in Relation to A/H Histo-Blood Group Antigen Expression. J. Virol, 2007. 81(7):3535 38. Wobus, C.E. et al., Murine Norovirus: a Model System To Study Norovirus Biology and Pathogenesis. J. Virol, 2006. 5104–5112 39. Cheetham, S. et al., Pathogenesis of a Genogroup II Human Norovirus in Gnotobiotic Pigs. J. Virol, 2007. 10372–10381 40. Richards, A.F., et al., Evaluation of a commercial ELISA for detecting Norwalk-like virus antigen in faeces. J Clin Virol, 2003. 26(1): p. 109-15. 41. Chao D.Y. et al. 2011. Detection of multiple genotypes of calicivirus infection in asymptomatic swine in taiwan. Zoonoses and Public Health, 2012, 59, 434–444 42. Green, J., et al., Broadly reactive reverse transcriptase polymerase chain reaction for the diagnosis of SRSV-associated gastroenteritis. J Med Virol, 1995. 47(4): p. 392-8. 43. Green, S.M., et al., Polymerase chain reaction detection of small round-structured viruses from two related hospital outbreaks of gastroenteritis using nosine-containing primers. J Med Virol, 1995. 45(2): p. 197-202. 44. Parashar, U., et al., 'Norwalk-like viruses'. Public health consequences and outbreak management. MMWR Recomm Rep, 2001. 50(RR-9): p. 1-17. 45. Tan, M., et al., The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J. Virol, 2004. 78:6233–6242. 46. Tan, M., et al., Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J. Virol, 2003. 77:12562–12571. 47. Tan, M., et al., Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol, 2005. 13:285–293. 48. Koho T. et al., Production of virus-like pqrticles qnd the P-domain protein of GII.4 norovirus. Journal of Virology Methods.2011 49. Worobey, M. and E.C. Holmes, Evolutionary aspects of recombination in RNA viruses. J Gen Virol, 1999. 80 ( Pt 10): p. 2535-43. 50. Dey, S.K., et al., Novel recombinant norovirus in Japan. Virus Genes, 2010. 40(3): p. 362-364. 51. Lochridge, V.P. and M.E. Hardy, Snow Mountain virus genome sequence and virus-like particle assembly. Virus Genes, 2003. 26(1): p. 71-82. 52. Hardy, M.E., et al., Human calicivirus genogroup II capsid sequence diversity revealed by analyses of the prototype Snow Mountain agent. Archives of Virology, 1997. 142(7): p. 1469-1479. 53. Bull, R.A., et al., Norovirus recombination in ORF1/ORF2 overlap. Emerging Infectious Diseases, 2005. 11(7): p. 1079-1085. 54. Bull, R.A., M.M. Tanaka, and P.A. White, Norovirus recombination. Journal of General Virology, 2007. 88: p. 3347-3359. 55. Tan, M., R.S. Hegde, and X. Jiang, The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol, 2004. 78(12): p. 6233-42. 56. Tan, M. and X. Jiang, The P domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. Journal of Virology, 2005. 79(22): p. 14017-14030. 57. Hardy, M.E., et al., Specific Proteolytic Cleavage of Recombinant Norwalk Virus Capsid Protein. Journal of Virology, 1995. 69(3): p. 1693-1698. 58. Huang, P., et al., Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis, 2003. 188(1): p. 19-31. 59. Huang, P., et al., Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol, 2005. 79(11): p. 6714-22. 60. Hutson, A.M., et al., Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol, 2005. 77(1): p. 116-20. 61. Shirato, H., et al., Noroviruses Distinguish between Type 1 and Type 2 Histo-Blood Group Antigens for Binding. Journal of Virology, 2008. 82(21): p. 10756-10767. 62. Bu, W., et al., Structural basis for the receptor binding specificity of Norwalk virus. J Virol, 2008. 82(11): p. 5340-7. 63. Cao, S., et al., Structural basis for the recognition of blood group trisaccharides by norovirus. Journal of Virology, 2007. 81(11): p. 5949-5957. 64. Choi, J.M., et al., Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(27): p. 9175-9180. 65. Lobue, A.D. et al., Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. 2006. 24(4):p. 5220–5234 66. Tan, M., et al., E. coli expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. Journal of Medical Virology. 2004. 74(4):p.641-649 67. Tan, M., et al., Norovirus P particle, a novel platform for vaccine development and antibody production. 2011. J. Virol. 85(2): p. 753–764 68. Xia, et al., A candidate dual vaccine against influenza and noroviruses. 2011. Vaccine 29(44) : p. 7670–7677 69. Mijovski, J.Z., et al., Detection and molecular characterisation of noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms. Infect Genet Evol, 2010. 10(3): p. 413-20. 70. LeGuyader, F., et al., Evaluation of a degenerate primer for the PCR detection of human caliciviruses - Brief report. Archives of Virology, 1996. 141(11): p. 2225-2235. 71. Hansman, G.S., et al., Genetic diversity of norovirus and sapovirus in hospitalized infants with sporadic cases of acute gastroenteritis in Chiang Mai, Thailand. J Clin Microbiol, 2004. 42(3): p. 1305-7. 72. Kumar, S., et al., Presence of a surface-exposed loop facilitates trypsinization of particles of Sinsiro virus, a virus, a genogroup II.3 norovirus. J Virol, 2007. 81(3): p. 1119-28. 73. Tian, P., et al., Porcine gastric mucin binds to recombinant norovirus particles and competitively inhibits their binding to histo-blood group antigens and Caco-2 cells. Letters in Applied Microbiology. 2005, 41, 315–320
摘要: Noroviruses (NoVs) are important pathogens known to cause epidemic outbreaks of severe gastroenteritis in indifferently people of all ages. Based on phylogenetic analyses, porcine NoVs belong to three distinct clusters in genogroup II (GII), which is also the most widely detected genogroup in humans. The zoonotic transmission between swine and human has been previously postulated. Porcine NoVs, majorly belonged to genotype 11, 18 and 19 of GII, has previously been detected from fecal samples of swine in diarrhea or without symptoms. Our previous work investigating the genotypic distribution of NoVs in swine in Taiwan suggested that at least two different genotypes (GII.11 and GII.18) were found from asymptomatic swine fecal samples. To further understand the prevalence of infection of swine NoVs among swine in Taiwan, blood samples from different ages of swine from different swine farms were collected to evaluate the sero-prevalence. The protruding P domain of the norovirus capsid is known to contain determinants for antibody and receptor binding. Therefore, the sequence of p-domain of GII.11 from Taiwan local isolates was cloned into pET21b and pET44a with poly-histidine-tag and expressed in Escherichia coli. The purified polyhistidine-tagged P domain proteins of NoV GII.11 showed a major protein band of about 35 kDa (P protein monomer) in SDS-10% PAGE gel. Furthermore, the p proteins could be captured effectively by porcine gastric mucin. Lastly, the p proteins were subjected to detect antibody responses among swine by enzyme-linked immunosorbent assay (ELISA) and the results showed variation by different geographic locations and ages of swine. In conclusion, our study successfully produced p protein from NoV, which demonstrated high potential in the development of diagnostic and epidemiological tools for studying noroviruses.
諾羅病毒(NoVs)為現今引起人類非細菌性急性腸胃炎的主要病原。人類的諾羅病毒主要分布於基因群: GI和GII。除了人類以外,豬的諾羅病毒主要分布於同樣是基因群GII中的11、 18和19。先前研究也推測了人與豬之間感染諾羅病毒人畜共通的可能性。豬感染諾羅病毒時並不會出現明顯的臨床症狀。本實驗室過去研究中-台灣豬隻諾羅病毒的基因型分布,也從豬隻無腹瀉症狀的糞便樣本中發現了兩種以上的不同基因型(GII.11、GII.18) 。為了進一步了解台灣豬隻的諾羅病毒感染率,收集了來自不同年齡不同豬場的豬隻血液樣本,以評估血清陽性率。過去研究得知,諾羅病毒的P domain病毒殼蛋白具有抗體與受體結合的重要結構位置。因此,本篇研究將來自台灣諾羅病毒GII.11的P domain序列放置到具有poly-histidine-tag的載體pET21b和pET44a中,並且利用大腸桿菌表現系統來表現病毒重組蛋白。經由純化過後的帶有poly-histidine-tag的GII.11P domain重組蛋白在SDS-10% PAGE gel中顯示的大小為35 kDa。此外,GII.11的P domain重組蛋白可以與豬的胃液黏膜蛋白結合(mucin) 。最後,使用酵素結合免疫吸附分析不同地理位置、年齡的豬隻抗體反應。 本研究成功生產出諾羅病毒的P domain蛋白,為將來診斷或是流行病學調查的有效工具。
文章公開時間: 2018-01-23
Appears in Collections:微生物暨公共衛生學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.