Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/93103
DC FieldValueLanguage
dc.contributor趙黛瑜zh_TW
dc.contributor.author黃政皓zh_TW
dc.contributor.authorCheng-Hao Huangen_US
dc.contributor.other微生物暨公共衛生學研究所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-16T06:29:27Z-
dc.identifier.citation1. Sabin AB, Schlesinger RW. 1945. Production of Immunity to Dengue with Virus Modified by Propagation in Mice. Science 101:640-642. 2. Geneva S. 2009. Dengue hemorrhagic fever: Diagnosis, treatment, prevention and control. 3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature 496:504-507. 4. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW. 2010. Dengue: a continuing global threat. Nature reviews. Microbiology 8:S7-16. 5. Richard J. Kuhn WZ, Michael G. Rossmann, Sergei V. Pletnev, Jeroen, Corver EL, Christopher T. Jones, Suchetana Mukhopadhyay, Paul R., Chipman EGS, Timothy S. Baker, and James H. Strauss. 2002. Structure of Dengue Virus Implications for Flavivirus. Cell 109:717-725. 6. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. The Journal of experimental medicine 197:823-829. 7. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL. 2008. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672-676. 8. Harrison SC. 2008. The pH sensor for flavivirus membrane fusion. The Journal of cell biology 183:177-179. 9. Stiasny K, Fritz R, Pangerl K, Heinz FX. 2011. Molecular mechanisms of flavivirus membrane fusion. Amino acids 41:1159-1163. 10. Zhang Y CJ, Chipman PR, Zhang W, Pletnev SV, Sedlak, D BT, Strauss JH, Kuhn RJ, Rossmann MG 2003. Structures of immature flavivirus particles. EMBO J 22:2604–2613. 11. Yu IM ZW, Holdaway HA, Li L, Kostyuchenko VA,, Chipman PR KR, Rossmann MG, Chen J. 2008. Structure of the Immature Dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837. 12. Ge P, Zhou ZH. 2014. Chaperone fusion proteins aid entropy-driven maturation of class II viral fusion proteins. Trends in microbiology 22:100-106. 13. Michael Bray RM, Issei TokimaTsu, and Ching-Juh LA. 1989. Genetic determinants responsible for acquisition of dengue type 2 virus mouse neurovirulence. J. Virol.:1647–1651. 14. Halstead SB. 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239:476-481. 15. Kielian M, Rey FA. 2006. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature reviews. Microbiology 4:67-76. 16. Modis Y, Ogata S, Clements D, Harrison SC. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 100:6986-6991. 17. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH. 2013. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nature structural & molecular biology 20:105-110. 18. Lorenz IC, Kartenbeck J, Mezzacasa A, Allison SL, Heinz FX, Helenius A. 2003. Intracellular Assembly and Secretion of Recombinant Subviral Particles from Tick-Borne Encephalitis Virus. Journal of virology 77:4370-4382. 19. Lorenz IC, Allison SL, Heinz FX, Helenius A. 2002. Folding and Dimerization of Tick-Borne Encephalitis Virus Envelope Proteins prM and E in the Endoplasmic Reticulum. Journal of virology 76:5480-5491. 20. Eiji Konishil PWM. 1993. Proper Maturation of the Japanese Encephalitis Virus Envelope Glycoprotein Requires Cosynthesis with the Premembrane Protein. Journal of virology 67:1672-1675. 21. Long Li S-ML, I-Mei Yu, Ying Zhang, Richard J. Kuhn, Jue Chen, Michael G. Rossmann. 2008. The Flavivirus Precursor Membrane-Envelope Protein Complex- Structure and Maturation. SCIENCE 319:1830. 22. Brabant M, Baux L, Casimir R, Briand JP, Chaloin O, Porceddu M, Buron N, Chauvier D, Lassalle M, Lecoeur H, Langonne A, Dupont S, Deas O, Brenner C, Rebouillat D, Muller S, Borgne-Sanchez A, Jacotot E. 2009. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis : an international journal on programmed cell death 14:1190-1203. 23. Catteau A. 2003. Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. Journal of General Virology 84:2781-2793. 24. S L Allison KS, C W Mandl, C Kunz, and F X Heinz. 1995. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. Journal of virology 69:5816–5820. 25. Courageot MP, Frenkiel MP, Dos Santos CD, Deubel V, Despres P. 2000. Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. Journal of virology 74:564-572. 26. Pryor MJ, Azzola L, Wright PJ, Davidson AD. 2004. Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. The Journal of general virology 85:3627-3636. 27. Hsieh SC, Wu YC, Zou G, Nerurkar VR, Shi PY, Wang WK. 2014. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. The Journal of biological chemistry 289:33149-33160. 28. Peng JG, Wu SC. 2014. Glutamic acid at residue 125 of the prM helix domain interacts with positively charged amino acids in E protein domain II for Japanese encephalitis virus-like-particle production. Journal of virology 88:8386-8396. 29. Tan TT, Bhuvanakantham R, Li J, Howe J, Ng ML. 2009. Tyrosine 78 of premembrane protein is essential for assembly of West Nile virus. The Journal of general virology 90:1081-1092. 30. Yoshii K, Igarashi M, Ichii O, Yokozawa K, Ito K, Kariwa H, Takashima I. 2012. A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. The Journal of general virology 93:27-38. 31. Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM. 2008. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. Journal of virology 82:7846-7862. 32. Lin YJ, Wu SC. 2005. Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. Journal of virology 79:8535-8544. 33. Hsieh SC, Zou G, Tsai WY, Qing M, Chang GJ, Shi PY, Wang WK. 2011. The C-terminal helical domain of dengue virus precursor membrane protein is involved in virus assembly and entry. Virology 410:170-180. 34. Tian S, Huang Q, Fang Y, Wu J. 2011. FurinDB: A Database of 20-Residue Furin Cleavage Site Motifs, Substrates and Their Associated Drugs. International Journal of Molecular Sciences 12:1060-1065. 35. VanBlargan LA, Mukherjee S, Dowd KA, Durbin AP, Whitehead SS, Pierson TC. 2013. The type-specific neutralizing antibody response elicited by a dengue vaccine candidate is focused on two amino acids of the envelope protein. PLoS pathogens 9:e1003761. 36. Pierson TC, Diamond MS. 2012. Degrees of maturity: the complex structure and biology of flaviviruses. Current opinion in virology 2:168-175. 37. Thomas J. Smith WEB, John L. Swanson, Jack M. McCown, and Edward L. Buescher. 1970. Physical and Biological Properties of Dengue-2 Virus and Associated Antigens. Journal of virology 5:524-532. 38. Hsieh SC, Liu IJ, King CC, Chang GJ, Wang WK. 2008. A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374:338-350. 39. Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML. 2001. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. Journal of virology 75:4040-4047. 40. Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, Andrews CA, Xu Q, Davis BS, Nason M, Fay M, Koup RA, Roederer M, Bailer RT, Gomez PL, Mascola JR, Chang GJ, Nabel GJ, Graham BS. 2007. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. The Journal of infectious diseases 196:1732-1740. 41. Galula JU, Shen WF, Chuang ST, Chang GJ, Chao DY. 2014. Virus-like particle secretion and genotype-dependent immunogenicity of dengue virus serotype 2 DNA vaccine. Journal of virology 88:10813-10830. 42. Kroeger MA, McMinn PC. 2002. Murray Valley encephalitis virus recombinant subviral particles protect mice from lethal challenge with virulent wild-type virus. Archives of virology 147:1155-1172. 43. Panya A, Sawasdee N, Junking M, Srisawat C, Choowongkomon K, Yenchitsomanus PT. 2015. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against Dengue virus infection. Chemical biology & drug design. 44. Calvert AE, Huang CY, Blair CD, Roehrig JT. 2012. Mutations in the West Nile prM protein affect VLP and virion secretion in vitro. Virology 433:35-44. 45. Sodoyer R. 2004. Expression systems for the Production of Recombinant Pharmaceuticals. Molecular Biology 18:51-62. 46. Francois B. 1999. The expression of recombinant proteins in E.Coli. Curr Opin Biotechnol 10:411-421. 47. Sudbey PE. 1996. The expression of recombinant proteins in yeasts. Current Opinion in Biotechnology 7:517-524. 48. W. Weber MF. 2009. Insect Cell-Based Recombinant Protein Production. Cell and Tissue Reaction Engineering:263-277. 49. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nature biotechnology 22:1393-1398. 50. Dagert M, Ehrlich SD. 1979. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23-28. 51. Schagger H, von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry 166:368-379. 52. Ying Zhang JC, Paul R.Chipman, Wei Zhang,Sergei V.Pletnev, Dagmar Sedlak,Timothy S.Baker, James H.Strauss,Richard J.Kuhn4 and Michael G.Rossmann. 2003. Structures of immature flavivirus particles. EMBO 22:2604-2613. 53. Susana Vázquez MıGG, Gerardo Guillen , Glay Chinea ,, Ana Beatriz Pérez MP, Rosmary Rodriguez, Osvaldo Reyes,, Hilda Elisa Garay ID, Gissel Garc´ıa, Mayling Alvarez. 2002. Immune response to synthtic peptides of dengue prM protein. Vaccine 20:1823-1830. 54. Hua RH, Chen NS, Qin CF, Deng YQ, Ge JY, Wang XJ, Qiao ZJ, Chen WY, Wen ZY, Liu WX, Hu S, Bu ZG. 2010. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections. Virology journal 7:249. 55. Shau-Ping Lei H-CL, Shan-shan Wang, James Callaway, Gary Wilcox. 1987. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. journal of Bacteriology 169:4379-4383. 56. Junjhon J, Lausumpao M, Supasa S, Noisakran S, Songjaeng A, Saraithong P, Chaichoun K, Utaipat U, Keelapang P, Kanjanahaluethai A, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. 2008. Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. Journal of virology 82:10776-10791.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/93103-
dc.description.abstractDengue is one of the most important vector-borne viral diseases in humans. During the egress of virion particle formation after dengue viral infection, pre-membrane (prM) and envelope (E) protein associate into heterodimers at ER membranes and prM protein is cleaved by the trans-Golgi resident furin protease to form the M envelope protein and the soluble pr segment, which is released into the extracellular medium upon particle secretion. prM cleavage marks maturation of flavivirus virions, which intimately correlated to change of conformation of envelope protein complexes and is a prerequisite for E dimerization. Therefore, there is an urgent need to develop antibodies to gain insight into how the interaction between prM and E affect the particle formation and secretion from host cells. The aim of this study was to (1) develop an anti-M antibody from mouse sera immunized by recombinant M protein produced from E coli; and (2) investigate the virus-like particle (VLP) maturation by modulating the furin cleavage site and using the anti-M antibody for detection. The prM (18.1–19.1 kDa) is a precursor to the M structural protein (7–9 kDa), which contains two-thirds of C-terminus as membrane anchor domain. In order to develop an anti-M only antibody, the full-length M sequence of DENV-2 was cloned into pET22b and the recombinant M protein was purified by nickel column under denature condition. The sera from mice immunized three times with recombinant M protein with Freud's adjuvant was applied to detect M protein from cells transfected by VLP-producing plasmids. According to the results of immunofluorescent assay (IFA) and western blotting, our data suggested that the anti-M protein antibody could detect M protein intra-cellularly and extra-celluarly secreted VLPs. Two forms of the M protein could be detected in our study including the prM in the immature virions and M protein in extracellular mature virions. Interestingly, by modulating the furin cleavage site, we could increase the maturity of VLPs by up to 90%. In conclusion, our study highlighted the importance of the furin-cleavage site in modulating the maturation and particle secretion of dengue VLP formation.en_US
dc.description.abstract登革病毒是現今人類社會重要的蟲媒介病毒疾病之一。受病毒感染後,病毒在複製的過程中前體膜蛋白 (prM) 和套膜蛋白 (E) 會在內質網中形成二聚體,隨後prM蛋白會被運送至高基氏體中受到furin酵素酶的作用,進而形成膜蛋白(M) 以及親水性的pr蛋白片段,並且隨著病毒顆粒釋放出細胞外。黃病毒顆粒上的prM切割位是決定E蛋白是否可以順利改變構型成為二聚體並成為成熟病毒顆粒至關重要的因素。因此,目前迫切需要開發出足以觀察prM和E蛋白之間交互作用的抗體,並且藉此抗體去探討在宿主細胞中病毒顆粒的形成及分泌。 本研究的目的如下 (1) 藉由大腸桿菌所表現之重組M蛋白免疫小鼠,並從血清中取得抗M蛋白抗體; (2) 利用抗M蛋白抗體觀察在furin切割位上的點突變所產出的類病毒顆粒之成熟度。 PrM蛋白 (18.1-19.1 kDa) 是M結構蛋白 (7-9kDa) 的前體蛋白,其C'端約三分之二為固定於膜上的跨膜結構。為了開發出一個抗M蛋白的抗體,將登革二型中全長的M蛋白構築到pET22b載體上,並且利用鎳離子管柱純化出重組的疏水性M蛋白。接著將純化後的蛋白與弗氏佐劑混合,以肌肉注射的方式對小鼠進行三次免疫,最後取其血清用以觀察轉染質體至細胞後所得的類病毒顆粒。 根據免疫螢光反應以及西方轉漬法的結果,我們的數據顯示,抗M蛋白抗體可以偵測到細胞內及細胞位的類病毒顆粒,並且同時可以偵測到在未成熟病毒顆粒上的prM,以及在成熟病毒顆粒上的M蛋白。有趣的是,我們透過在furin切割位上的突變結果,可以將類病毒顆粒之成熟度提升至90%。 總之,透過本實驗可得知furin切割位上的突變對於類病毒顆粒的成熟度及分泌能力的重要性。zh_TW
dc.description.tableofcontents第一章、 文獻回顧 1 1.1 登革病毒簡介 1 1.2 登革病毒結構及其基因體 1 1.3 登革病毒生活史 2 1.4 登革病毒E及prM / M蛋白之結構特性及功能 3 1.5 登革病毒prM/E蛋白之間的交互作用 4 1.6 類病毒顆粒 (Virus-like particles, VLPs) 6 1.7 登革病毒膜蛋白抗體發展及應用 6 1.8 蛋白表現系統之比較 7 1.9 實驗動機與目的 9 第二章、 材料與方法 10 2.1 登革病毒M結構蛋白原核表現質體之構築 10 2.2 重組結構蛋白之表現 15 2.3 登革furin切割位序列突變及病毒顆粒生產 21 第三章、 結果 27 3.1 登革病毒M結構蛋白原核表現質體之構築 27 3.2 登革病毒pET22b-M重組蛋白表現 28 3.3 登革furin切割位序列突變及病毒顆粒生產 30 第四章、 討論 33 第五章、 參考文獻 36 第六章、 附錄 43zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-08-18起公開。zh_TW
dc.subject登革病毒zh_TW
dc.subject抗體zh_TW
dc.subject免疫zh_TW
dc.subject點突變質體zh_TW
dc.subjectDENVen_US
dc.subjectAntibodyen_US
dc.subjectImmunizationen_US
dc.subjectMutant at plasmiden_US
dc.titleDevelopment of anti-M antibody to investigate the interaction of pr, M and E protein during dengue virus-like particle formationen_US
dc.title建立抗登革膜蛋白抗體以觀察登革類病毒顆粒形成時pr,M和E蛋白之交互作用zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-08-18zh_TW
dc.date.openaccess2018-08-18-
Appears in Collections:微生物暨公共衛生學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.