Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/93104
標題: Establishment of Recombinant Orf Virus Expressing Goatpox virus P32 Proteins
建立重組orf病毒表達山羊痘病毒P32蛋白
作者: 趙譯棋
I-Chi Chao
關鍵字: 羊傳染性化膿性病毒
羊痘病毒
Orf virus
goatpox virus
引用: Amann, R., Rohde, J., Wulle, U., Conlee, D., Raue, R., Martinon, O., and Rziha, H.J. (2013). A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. Journal of virology 87, 1618-1630. Arvin, A.M. (2000). Vaccines, viral. In: Encyclopedia of microbiology, 2nd ed. 4, 779-787. Babiuk, L.A. (1999). Broadening the approaches to developing more effective vaccines. Vaccine 17, 1587-1595. Babiuk, S., Bowden, T.R., Boyle, D.B., Wallace, D.B., and Kitching, R.P. (2008). Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle. Transboundary and emerging diseases 55, 263-272. Bhanot, V., Balamurugan, V., Bhanuprakash, V., Venkatesan, G., Sen, A., Yadav, V., Yogisharadhya, R., and Singh, R.K. (2009). Expression of P32 protein of goatpox virus in Pichia pastoris and its potential use as a diagnostic antigen in ELISA. Journal of virological methods 162, 251-257. Biel, S.S., Nitsche, A., Kurth, A., Siegert, W., Ozel, M., and Gelderblom, H.R. (2004). Detection of human polyomaviruses in urine from bone marrow transplant patients: comparison of electron microscopy with PCR. Clinical chemistry 50, 306-312. Breitbach, C.J., De Silva, N.S., Falls, T.J., Aladl, U., Evgin, L., Paterson, J., Sun, Y.Y., Roy, D.G., Rintoul, J.L., Daneshmand, M., et al. (2011). Targeting tumor vasculature with an oncolytic virus. Molecular therapy : the journal of the American Society of Gene Therapy 19, 886-894. Chan, K.W., Hsu, W.L., Wang, C.Y., Yang, C.H., Lin, F.Y., Chulakasian, S., and Wong, M.L. (2009a). Differential diagnosis of orf viruses by a single-step PCR. Journal of virological methods 160, 85-89. Chan, K.W., Lin, J.W., Lee, S.H., Liao, C.J., Tsai, M.C., Hsu, W.L., Wong, M.L., and Shih, H.C. (2007). Identification and phylogenetic analysis of orf virus from goats in Taiwan. Virus genes 35, 705-712. Chan, K.W., Yang, C.H., Lin, J.W., Wang, H.C., Lin, F.Y., Kuo, S.T., Wong, M.L., and Hsu, W.L. (2009b). Phylogenetic analysis of parapoxviruses and the C-terminal heterogeneity of viral ATPase proteins. Gene 432, 44-53. Dagert, M., and Ehrlich, S.D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6, 23-28. Delhon, G., Tulman, E.R., Afonso, C.L., Lu, Z., de la Concha-Bermejillo, A., Lehmkuhl, H.D., Piccone, M.E., Kutish, G.F., and Rock, D.L. (2004). Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. Journal of virology 78, 168-177. Diven, D.G. (2001). An overview of poxviruses. Journal of the American Academy of Dermatology 44, 1-16. Fenner, F. (1979). Portraits of viruses: the poxviruses. Intervirology 11, 137-157. Fenner, F. (2000). Adventures with poxviruses of vertebrates. FEMS microbiology reviews 24, 123-133. Fleming, S.B., Blok, J., Fraser, K.M., Mercer, A.A., and Robinson, A.J. (1993). Conservation of gene structure and arrangement between vaccinia virus and orf virus. Virology 195, 175-184. Haig, D.M., and McInnes, C.J. (2002). Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus research 88, 3-16. Hazelton, P.R., and Gelderblom, H.R. (2003). Electron microscopy for rapid diagnosis of infectious agents in emergent situations. Emerging infectious diseases 9, 294-303. Heine, H.G., Stevens, M.P., Foord, A.J., and Boyle, D.B. (1999). A capripoxvirus detection PCR and antibody ELISA based on the major antigen P32, the homolog of the vaccinia virus H3L gene. Journal of immunological methods 227, 187-196. Inoshima, Y., Morooka, A., Murakami, K., and Sentsui, H. (2000). Simple preparation of parapoxvirus genome DNA for endonuclease analysis. Microbiology and immunology 44, 69-72. Inoshima, Y., Murakami, K., Yokoyama, T., and Sentsui, H. (2001). Genetic heterogeneity among parapoxviruses isolated from sheep, cattle and Japanese serows (Capricornis crispus). The Journal of general virology 82, 1215-1220. Kieny, M.P., Lathe, R., Drillien, R., Spehner, D., Skory, S., Schmitt, D., Wiktor, T., Koprowski, H., and Lecocq, J.P. (1984). Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 312, 163-166. Konishi, E., Pincus, S., Paoletti, E., Laegreid, W.W., Shope, R.E., and Mason, P.W. (1992). A highly attenuated host range-restricted vaccinia virus strain, NYVAC, encoding the prM, E, and NS1 genes of Japanese encephalitis virus prevents JEV viremia in swine. Virology 190, 454-458. Kottaridi, C., Nomikou, K., Lelli, R., Markoulatos, P., and Mangana, O. (2006). Laboratory diagnosis of contagious ecthyma: comparison of different PCR protocols with virus isolation in cell culture. Journal of virological methods 134, 119-124. Mazur, C., and Machado, R.D. (1989). Detection of contagious pustular dermatitis virus of goats in a severe outbreak. The Veterinary record 125, 419-420. McKeever, D.J., Jenkinson, D.M., Hutchison, G., and Reid, H.W. (1988). Studies of the pathogenesis of orf virus infection in sheep. Journal of comparative pathology 99, 317-328. Moss, B. (1996). Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences of the United States of America 93, 11341-11348. OIE (OIE Terrestrial Manual 2010). SHEEP POX AND GOAT POX。OIE Terrestrial Manual 2010。Chapter 2.7.1. Pallesen, L., Poulsen, L.K., Christiansen, G., and Klemm, P. (1995). Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences. Microbiology 141 ( Pt 11), 2839-2848. Panicali, D., Davis, S.W., Weinberg, R.L., and Paoletti, E. (1983). Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America 80, 5364-5368. Paoletti, E. (1996). Applications of pox virus vectors to vaccination: an update. Proceedings of the National Academy of Sciences of the United States of America 93, 11349-11353. Rintoul, J.L., Lemay, C.G., Tai, L.H., Stanford, M.M., Falls, T.J., de Souza, C.T., Bridle, B.W., Daneshmand, M., Ohashi, P.S., Wan, Y., et al. (2012). ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Molecular therapy : the journal of the American Society of Gene Therapy 20, 1148-1157. Rohde, J., Amann, R., and Rziha, H.J. (2013). New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus. PloS one 8, e83802. Rohde, J., Schirrmeier, H., Granzow, H., and Rziha, H.J. (2011). A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV). Vaccine 29, 9256-9264. Scott, A.C., Keymer, I.F., and Labram, J. (1981). Parapoxvirus infection of the red squirrel (Sciurus vulgaris). The Veterinary record 109, 202. Smith, G.L., Mackett, M., and Moss, B. (1984). Recombinant vaccinia viruses as new live vaccines. Biotechnology & genetic engineering reviews 2, 383-407. Taylor, J., Christensen, L., Gettig, R., Goebel, J., Bouquet, J.F., Mickle, T.R., and Paoletti, E. (1996). Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian diseases 40, 173-180. Tong, G.Z., Zhang, S.J., Wang, L., Qiu, H.J., Wang, Y.F., and Wang, M. (2001). Protection of chickens from infectious laryngotracheitis with a recombinant fowlpox virus expressing glycoprotein B of infectious laryngotracheitis virus. Avian pathology : journal of the WVPA 30, 143-148. Torfason, E.G., and Gunadottir, S. (2002). Polymerase chain reaction for laboratory diagnosis of orf virus infections. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 24, 79-84. Tsai, S.M., Chan, K.W., Hsu, W.L., Chang, T.J., Wong, M.L., and Wang, C.Y. (2009). Development of a loop-mediated isothermal amplification for rapid detection of orf virus. Journal of virological methods 157, 200-204. Tulman, E.R., Afonso, C.L., Lu, Z., Zsak, L., Sur, J.H., Sandybaev, N.T., Kerembekova, U.Z., Zaitsev, V.L., Kutish, G.F., and Rock, D.L. (2002). The genomes of sheeppox and goatpox viruses. Journal of virology 76, 6054-6061. Van Regenmortel, M.H. (2000). On the relative merits of italics, Latin and binomial nomenclature in virus taxonomy. Archives of virology 145, 433-441. Vera, M., and Fortes, P. (2004). Simian virus-40 as a gene therapy vector. DNA and cell biology 23, 271-282. Voigt, H., Merant, C., Wienhold, D., Braun, A., Hutet, E., Le Potier, M.F., Saalmuller, A., Pfaff, E., and Buttner, M. (2007). Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine 25, 5915-5926. Wheeler, C.E., and Cawley, E.P. (1956). The microscopic appearance of ecthyma contagiosum (orf) in sheep, rabbits, and man. The American journal of pathology 32, 535-545.
摘要: Orf virus (ORFV), belonging to parapoxvirus, causes skin lesions in infected sheep and goats. Due to the restricted host range, the skin tropism, the absence of systemic virus spread, and the short-lived ORFV vector-specific immunity allowing repeated immunizations, it has been successfully used as a novel viral vector system for expressing foreign antigens to prevent infectious diseases of swine, rabbit, and avian. Hence, study herein aimed to establish ORFV as a bivalent vaccine platform for goat. In 2008, goatpox (GP) outbreaks caused substantial loss in the production and productivity of goats in Taiwan. Considering that control of goatpox virus (GPV) infection relies on foreign vaccine, the goal of current study is to construct a recombinant ORFV that would express goatpox virus P32, the major immunogenic protein. To do so, coding regions of GPV P32 and eGFP that serves as a selection marker were inserted between the flanking sequences, i.e. open reading frame 127 and 128 of the ORFV genome. By homologous recombination, recombinant ORFV with GPV p32 gene (GPV P32-ORFV) was generated. At the present, the presence and expression of GPV P32 gene were confirmed by polymerase chain reaction and western blot analysis, respectively. The immune characteristics of GPV P32-ORFV will be further tested in animal models.
羊傳染性化膿性病毒(Orf virus,ORFV) 隸屬於痘病毒科的副痘病毒屬,發生於世界各地的山羊與綿羊,其症狀為造成口腔潰瘍和膿皰等,對於成羊來說發生率和死亡率不高,但對於年幼動物ORFV的感染具有致死性,ORFV為具有封套,含雙股DNA的基因體,由於其基因體較大,具有非必要基因可與外源基因置換,基於其限制性的宿主、局部性的皮膚感染、可重複接種等特性,ORFV作為載體之發展具有相當高的潛力,而前人的研究中也有以ORFV為載體表達外源性蛋白,例如:狂犬病的醣蛋白質基因、禽流感的HA、NA、豬瘟病毒E2 蛋白等,台灣於2008年山羊痘疫情爆發,對飼養的經濟動物產業造成嚴重的經濟損失,而為了控制其疫情皆有賴於國外疫苗之進口,台灣目前並無研發和自製之羊痘疫苗,有鑑於此本研究試圖以ORFV為載體,用以架構可以表達羊痘病毒的主要免疫源蛋白(P32)的重組病毒。製備重組病毒所需的transfer vector中含有自ORFV基因體中增幅出的open reading frame 127以及128核酸序列;以此作為flanking sequence,透過homologous recombination將羊痘病毒P32 基因重組入ORFV基因體中。經由PCR、南方墨點法檢測基因型,並以西方墨點法、免疫螢光偵測P32蛋白質的表現,確認已成功製備P32-ORFV重組病毒,未來將藉由動物實驗以證實其所產生之免疫反應。
URI: http://hdl.handle.net/11455/93104
文章公開時間: 2017-08-31
Appears in Collections:微生物暨公共衛生學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.