Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9364
標題: 氧通量及氫退火對於直流濺鍍氧化鋅鋁(AZO)透明導電薄膜之特性分析
Influence of oxygen flow and hydrogen annealing on transparent conductive AZO thin films by DC sputtering
作者: 林群智
Lin, Chiun-Chih
關鍵字: 氧化鋅
AZO
濺鍍
退火
sputtering
anneal
出版社: 電機工程學系所
引用: 第一章參考文獻 [1] W.Yang, Z. Wu, Z. Liu, A. Pang, Yu-Li Tu, Z. C. Feng, Thin Solid Films 519 (2010) 31-36. [2] J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, J.M. Myoung, Solid-State Electronics 54 (2010) 1447-1450. [3] H.K. Kim, S.H. Han, T.Y. Seong, W.K. Choi, Appl. Phys. Lett. 77 (2000) 1647. [4] S H Lee, T S Lee, K S Lee, B Cheong, Y D Kim, W M Kim, J. Phys. D: Appl. Phys. 41 (2008) 095303 (7pp). [5] G. Fang, D. Li, Bao-Lun Yao, Vacuum 68 (2003) 363-372. [6] 蔡有仁、王納富、許峰豪,”透明導電薄膜簡介”, 正修科技大學 電子工程研究所. [7] K.H. Kim, K. C. Park, D. Y. Ma, J. Appl. Phys. 81 (1997) 12. [8] Hong-Ying Chen, Ming-Wei Tsai, Thin Solid Films 519 (2011) 5966-5970. [9] P.H. Hsieh, Y.M. Lu, W.S. Hwang, J.J. Yeh, W.L. Jang, Surface & Coatings Technology 205 (2010) S206-S209. [10] F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Surface & Coatings Technology 205 (2011) 5269-5277. [11] J.H. Oh, K.K. Kim, T.Y. Seong, Applied Surface Science 257 (2011) 2731-2736. [12] X. Jiang, F. L. Wong, M. K. Fung, S. T. Lee, Appl. Phys. Lett. 83 (2003) 1875. [13] D. Song, A. G. Aberle, J. Xia, Applied Surface Science 195 (2002) 291-296. [14] H. YANAGI, H. KAWAZOE, A. KUDO, M. YASUKAWA, H. HOSONO, Journal of Electroceramics 4:2/3 (2000) 407-414. [15] H. Ohta, M. Orita, M. Hirano, I. Yagi, K. Ueda, J. Appl. Phys. 91 (2002) 3074. [16] S.Y. Tsai, M.H. Hon, Y.M. Lu, Solid-State Electronics 63 (2011) 37-41. [17] S. Ilican, Y Caglar, M. Caglar, F Yakuphanoglu, Applied Surface Science 255 (2008) 2353-2359. [18] S.M. Rozati, S. Moradi, S. Golshahi, R. Martins, E. Fortunato, Thin Solid Films 518 (2009) 1279-1282. [19] L. Cao, L. Zhu, J. Jiang, R. Zhao, Z.Ye, B. Zhao, Solar Energy Materials & Solar Cells 95 (2011) 894-898. [20] K.Haga, T.Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y.Segawa, Thin Solid Films 433 (2003) 131-134. [21] H. Y. Xu, Y. C. Liu, R. Mu, C. L. Shao, Y. M. Lu, Appl. Phys. Lett. 86 (2005) 123107. [22] S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films 434 (2003) 14-19. [23] Y.H. Kim, J. Jeong, K.S. Lee, J.K. Park, Y.J. Baik, T.-Y. Seong, W.M. Kim, Applied Surface Science 256 (2010) 5102-5107. [24] Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, C. Sun, R.F. Huang, L.S. Wen, Thin Solid Films 497 (2006) 20- 23. [25] A.M.K. Dagamseh, B. Vet, F.D. Tichelaar, P. Sutta, M. Zeman, Thin Solid Films 516 (2008) 7844-7850. [26] N. Sakai, Y. Umeda, F. Mitsugi, T. Ikegami, Surface & Coatings Technology 202 (2008) 5467-5470. [27] 謝振剛,“氧化鋅鋁透明導電膜光、電特性之研究”,碩士論文 (2005). [28] D.H. Zhang, T.L. Yang, Q.P. Wang, D.J. Zhang, Materials Chemistry and Physics 68 (2001) 233-238. [29] A. V. Singh, R. M. Mehra, Nuttawuth Buthrath, Akihiro Wakahara, Akira Yoshida, J. Appl. Phys. 90 (2001) 5661. [30] D. Dimova-Malinovsk, N. Tzenov a, M. Tzolov, L. Vassilev, Materials Science and Engineering B 52 (1998) 59-62. 第二章參考文獻 [1] J.H. Oh, K.K. Kim, T.Y. Seong, Applied Surface Science 257 (2011) 2731-2736. [2] 江朋威,“不同催化劑成長之氧化鋅奈米柱應用於染料敏化太陽能電池”, 碩士論文 (2011). [3] 謝振綱,“氧化鋅鋁透明導電膜光、電特性之研究”,碩士論文 (2005). [4] C.C. Wang, Industrial Materials Magazine, 236, (2006). [5] Y. Igasaki, H. Saito, Thin Solid Films 199 ( 1991 ) 223-230. [6] G. Gordillo, C. Calderon, Solar Energy Materials & Solar Cells 69 (2001) 251-260. [7] T. Komaru,S.Shimizu at al., Jpn.J. Appl.Phys. 38 (1999) 5796-5804. [8] J.Ma, F. Ji, D.h. Zhang, H.l. Ma, S.y. Li, Thin Solid Films 357 (1999) 98-101. [9] J.H. Lee, B.O. Park, Thin Solid Films 426 (2003) 94–99. [10] 林素霞,博士論文,“氧化鋅薄膜特性改良與應用”,國立成功大學材料科學研究所 (2003). [11] 林正偉,“氧化鋅-鋁多層膜之結構與光電特性研究”,碩士論文 (2004). [12] 葉志鎮,氧化鋅半導體摻雜技術與應用,浙江大學出版社 (2009). [13] A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Thin Solid Films, 204 (1991) 255-264. [14] 林博鏞,“大氣電漿在玻璃表面清潔製程之應用”,平面顯示器製程設備技術專刊 (2008). [15] Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press (2001). [16] K.Wasa, and S.Hayakawa, Handbook of sputter deposition technology, Noyes publications (1992). [17] 李沇憲,“射頻磁控濺鍍製備氧化鋅摻氟薄膜應用於薄膜太陽能電池之研究”,碩士論文 (2011). [18] 劉文月,”射頻磁控濺鍍氧化鋅薄膜電性與光學特性之研究”,國立成功大學材料科學及工程學系碩士論文 (2001). [19] 張榮芳,”反應射頻磁控濺鍍透明導電膜Zno:Al膜之成長特性及研究”,國立成功大學材料科學及工程學系博士論文 (2001). [20] John A. Thornton, J. Vac. Sci. Technol., 11 (1974) 666-670. [21] O. Kluth, G. Schope, J. Hupkes, C. Agashe, J Muler, B Rech, Thin Solid Films 442 (2003) 80–85. [22] 吳坤暘,“溶凝膠法製備含銀之AZO透明導電膜的研究”,碩士論文 (2005). [23] 張國華,“透明導電氧化鋅材料特性分析及其應用在氮化鎵蕭特基二極體之研究”,碩士論文 (2006). [24] B.Y. Oh, M.C. Jeong, D.S .im, W. Lee, J.M. Myoung, Journal of Crystal Growth 281 (2005) 475-480. [25] 施敏, 半導體元件物理學, 34-40, (2008) 第三章參考文獻 [1] 汪建民,材料分析,中國材料科學學會. [2] Yong Seob Park, Han-Ki Kim, Thin Solid Films 519 (2011) 8018-8022. [3] 張介佳,“利用Sol-Gel方法製作AZO透明導電薄膜及其特性分析”,中興大學 (2009). [4] 洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾,“ITO 透明導電薄膜:從發展與應用到製備與分析”,台北科技大學有機高分子研究所 (2005). 第四章參考文獻 [1] G.J. Fang, D. Li, B.L. Yao, Vacuum, 68 (2003) 363. [2] N. Ohta, D. Ohba, S. Sato, Z. Tang, H. Shimizu, H. Shirai, Thin Solid Films 519 (2011) 6920. [3] C.H. Huang, H.L. Cheng, W.E. Chang, M.S. Wong, J. Electrochem. Soc. 158 (2011) 510. [4] J. Kim, J. H. Yu, S. W. Jee, Y. C. Park, M. Ju, S. Han, Y. Kim, J. H. Kim, W. A. Anderson, J. H. Lee, J. Yi, Materials Lett. 65 (2011) 786. [5] J.H. Park, J.M. Shin, S.Y. Cha, J.W. Park, S.Y. Jeong, H.K. Pak, C.R. Cho, J. Korean Phys. Soc. 49 (2006), 584. [6] Q.B. Ma, Z.Z. Ye, H.P. He, J.R. Wang, L.P. Zhu, B.H. Zhao, Materials Characterization 59 (2008) 124-128. [7] J. Huang, R. Tan, Y. Zhang, J. Li, Y. Yang, X. Zhang, W. Song, J Mater Sci 23 (2012) 356-360. [8] W. Li, H. Hao, J Mater Sci 47 (2012) 3516-3521. [9] 陳柏榕,“氧化鋅鋁透明導電膜研究”,碩士論文 (2010). [10] J.H. Huang, R.Q. Tan, Y.L. Zhang, J. Li, Y. Yang, X.P. Zhang, W.J. Song, J Mater Sci: Mater Electron 23 (2012) 356-360. [11] W. Li, H. Hao, J Mater Sci 47 (2012) 3516-3521. [12] L. Gong, Z.Z. Ye, J.G. Lu, L.P. Zhu, J.Y. Huang, X.Q. Gu, B.H. Zhao, Vacuum 84 (2010) 947-952. [13] J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B. H. Zhao, Q. L. Liang, Journal of applied physics 100 (2006) 073714. [14] X.Q. Gu, L.P. Zhu, Z.Z. Ye, Q.B. Ma, H.P. He, Y.Z. Zhang, B.H. Zhao, Solar Energy Materials & Solar Cells 92 (2008) 343-347. [15] D.H. Hwang, J.H. Ahn, K.N. Hui, K.S. Hui, Y.G. Son, Journal of Ceramic Processing Research 12 (2011) 150-154. [16] S. M. Jung, Y. H. Kim, S. I. Kim, S.I. Yoo, Current Applied Physics 11 (2011) S191-S196. [17] Donald A. Clugston, Paul A. Basore, Progress in photovoltaics:research and applications 5 (1997) 229-236. [18] S.M. Kim, Y.S. Rim, M.J. Keum, K.H. Kim, J Electroceram 23 (2009) 341-345. [19] L. Baoting, Z. Yang, Z. Hongfang, L. Man, G. Zhe, Z. Qingxun, P. Yingcai, RARE METALS 30 (2011) 170. [20] Z.Z. Ye, Q. Qian, G.D. Yuan, B.H. Zhao, D.W. Ma, Journal of Crystal Growth 274 (2005) 178-182. [21] T. Tsuji, M. Hirohashi, Applied Surface Science 157 (2000) 47-51. [22] L. Li, L. Fang, X.M. Chen, J. Liu, F.F. Yang, Q.J. Li, G.B. Liu, S.J. Feng, Physica E 41 (2008) 169-174 [23] A.V. Singh, R.M. Mehra, Nuttawuth Buthrath, Akihiro Wakahara, Akira Yoshida, J. Appl. Phys. 90 (2001) 5661. [24] C.H. Huang, H.L. Cheng, W.E. Chang, M. S. Wong, Journal of The Electrochemical Society, 158 (2011) 510-515. [25] D. Horwat, A. Billard, Thin Solid Films 515 (2007) 5444-5448. [26] J.F. Chang, W.C. Lin, M.H. Hon, Applied Surface Science 183 (2001) 18-25. [27] S.S. Lin, J.L. Huang, P. Sajgalik, Surface & Coatings Technology 185 (2004) 254- 263. [28] B.D. Ahn, S.H. Oh, C.H. Lee, G.H. Kim, H.J. Kima, S.Y. Lee, Journal of Crystal Growth 309 (2007) 128-133. [29] W. Yang, Z. Wu, Z. Liu, A. Pang, Y.L. Tu, Z.C. Feng, Thin Solid Films 519 (2010) 31-36. [30] D.H. Zhang and D.E. Brodie, Thin Solid Films, 238 (1994) 95-100 95. [31] J.F. Chang, W.C. Lin, M.H. Hon, Applied Surface Science 183 (2001) 18-25. [32] K. Zhang, A.R. Forouhi, I. Bloomer, J. Vac. Sci. Technol. A 17 (1999) 1843. [33] H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, Y. Cao, Applied Surface Science 257 (2011) 4906-4911. [34] W. Yang, Z. Wu, Z. Liu, A. Pang, Y.L. Tu, Z.C. Feng, Thin Solid Films 519 (2010) 31-36. [35] K. Ellmer, K. Diesner, R. Wendt, S. Fiechter, Solid State Phenomena 51 (1996) 541. [36] M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, J. Vac. Sci. Technol. 14 (1996) 2220. [37] B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, R. Wu, D.W. Zeng, C.S. Xie, Thin Solid Films 519 (2011) 3809–3815. [38] H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Appl. Phys. Lett. 77 (2000) 3761. [39] B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J. M. Myoung, Journal of Crystal Growth 281 (2005) 475-480. [40] K. L. Chopra, S. Major, D.K. Pankya, Thin Solid Films, 102 (1983) 1-46. [41] J.D. Ye, S.L. Gu, S.M. Zhu, F. Qin, S.M. Liu, W. Liu, X. Zhou, L.Q. Hu, R. Zhang, Y. Shi, and Y.D. Zheng, J. Appl. Phys. 96 (2004) 5308. [42] S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 87 (2000) 2413. [43] 謝振剛,“氧化鋅鋁透明導電膜光、電特性之研究”,碩士論文 (2005). [44] B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, J. Appl. Phys. 101 (2007) 033713. [45] C. Guillen, J. Herrero, Vacuum 84 (2010) 924.
摘要: 本研究利用直流磁控濺鍍法(DC Magnetron Sputtering)製備氧化鋅鋁(AZO)透明導電薄膜並進行材料特性分析。將玻璃基板置於氬氣氛圍中濺鍍沉積氧化鋅鋁薄膜,並探討不同沉積條件對氧化鋅鋁薄膜的結構及光電性質之影響。 由實驗結果得知沉積功率為80 W時可以得到結晶性良好的薄膜,當基板溫度為325 °C時,其可得較佳的薄膜光電特性,電阻率為3.73×10-4 Ω-cm時,平均穿透率可達到80 %以上。由XRD圖形發現AZO薄膜具有顯著的(002)擇優取向,從SEM圖形中也可發現薄膜由低溫時的塊狀結構轉變成高溫時的緻密結構。為了進一步提升光電特性,我們嘗試在濺鍍時通入氧氣,觀察其特性的變化,結果發現氧氣對於薄膜的電性明顯變差,但在光學特性方面,平均穿透率增加到90.8 %。 在後處理製程部分,我們對氧化鋅鋁(AZO)薄膜進行退火後處理,將薄膜置於混合氫氣(H2/Ar:6 %)中退火,藉由改變退火溫度探討其光電性質的改變。根據實驗結果發現,經過退火的AZO薄膜其結晶性及光電特性有明顯的改善,電阻率最低可達2.42×10-4 Ω-cm,光學能隙也增加至3.64 eV,而且可見光穿透率也大幅提高。
In this study, Al-doped zinc oxide (AZO) transparent conductive thin films were deposited by a magnetic controlled direct current (DC) sputtering system, and were characterized systematically. The AZO films was deposited onto a glass substrate in Ar gas environment, and was investigated the influence on its electrical and optical property with different deposition condition. The best crystallization of the films is obtained at a DC power of 80 W. It was observed that the AZO thin films deposited at 325 °C exhibited the lowest resistivity of 3.73×10-4 Ω-cm. The average optical transmittance of AZO films is over 80 % in the visible region. XRD result shows that all the AZO films have prominent (002) orientation. From SEM images, the films become more compact at high substrate temperature. In order to improve the electrical and optical properties, we add a small amount of oxygen to argon gas. The average optical transmittance in the visible region increases to 90.8 %, but the resistivity decreases. As for the post-treatment, AZO films were annealed in H2/Ar:6 % atmospheres. As the results, the crystallinity and the photo-electrical properties of the AZO thin films were improved after annealing. The lowest resistivity of 2.42×10-4 Ω-cm was obtained as the annealing temperature is 600 °C, moreover, a maximum optical band gap is 3.64 eV, and the high average optical transmittance were still obtained.
URI: http://hdl.handle.net/11455/9364
其他識別: U0005-1107201211163500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107201211163500
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.