Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9428
標題: 透明導電薄膜及其異質接面之研究
Study of properties of transparent conductive oxide thin films and related heterojunction
作者: 黃家城
Huang, Chia-Cheng
關鍵字: 透明導電膜
transparent conductive oxide thin films
異質接面
p-n接面
heterojunction
p-n junction
出版社: 電機工程學系所
引用: 參考文獻 [1] T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, C. Ballif, Appl. Phys. Lett. 94, (2009) 063501. [2] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. Sol. Cells 86 (2005) 385-397. [3] J. Hüpkes, B. Recha, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, Sol. Energy Mater. Sol. Cells 90 (2006) 3054–3060. [4] C. J. Kim, D. Kang, I. Song, Jae C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, Y. Park, Electron Devices Meeting, 2006. IEDM ''06. International. [5] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, S. Niki, Japan. J. Appl. Phys. 43 (2004) L180–L182. [6] T. J. Hsueh , C. L. Hsu, S. J. Chang, I. C. Chen, Sensors and Actuators B 126 (2007) 473–477. [7] Z.A. Ansari, R.N. Karekar , R.C. Aiyer, Thin Solid Films 305 (1997) 330-335. [8] Maoshui Lv, et al., Appl. Surf. Sci. 52 (2006) 5687-5692. [9] A. Azens, C.J. Granqvist, Solid State Electrochem.7 (2003) 64–68 [10] Y. S. Rim, S. M. Kim, K. H. Kim, Japan. J. Appl. Phys. 47 (2008) 5022–5027. [11] 楊明輝,工業材料雜誌,179 期 (2000) 34-44 [12] 李玉華,"透明導電膜及其應用",科儀新知,12卷第一期,(79),94-102. [13] J.L Vossen, Physics of Thin Films, 9 (1977) 1. [14] 廬志銘, 國立中興大學材料科學與工程學研究所碩士論文, 民國九十六年八月。 [15] F. H. Wang, H. P. Chang, J. C. Chao, Thin Solid Films, 519 (2011) 5178-5182. [16] H.P. Chang, F.H. Wang, J.C. Chao, C.C. Huang, H.W. Liu, Current Applied Physics, 11(2011) s185-s190. [17] L. Wang, L. Meng, V. Teixeira, S. Song, Z. Xu, X. Xu, Thin Solid Films 517 (2009) 3721–3725. [18] Jiaping Han, P.Q. Mantas, A.M.R. Senos, J. of the European Ceramic Society 21 (2001) 1883–1886. [19] J.M. Lin, Y.Z. Zhang, Z.Z. Ye, X.Q. Gu, X.H. Pan, Y.F. Yang, J.G. Lu, H.P. He, B.H. Zhao, Appl. Surf. Sci. 255 (2009) 6460–6463. [20] Huafu Zhang, Chengxin Lei, Hanfa Liu, Changkun Yuan, Appl. Surf. Sci. 255 (2009) 6054–6056. [21] H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236 (1993) 27–31 [22] Zhiyong Fan, Xiaogang Wen, Shihe Yang, Jia G. Lu, Appl. Phys. Lett. 87 (2005) 013113 [23] David O. Scanlon, Benjamin J. Morgan, Graeme W. Watson, Phys. Rev. Lett. 103 (2009) 096405 [24] Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma, Makoto Ohtani, Takayuki Makino, Masatomo Sumiya, Keita Ohtani, Shigefusa F. Chichibu, Syunrou Fuke, Yusaburou Segawa, Hideo Ohno, Hideomi Koinuma, Masashi Kawasaki, Nature Materials 4 (2005) 42 - 46 [25] A. L. Dawar, J. C. Joshi, J. Mater. Sci. 19 (1984) 1. [26] K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102 (1983) 1. [27] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (Philadelphia, PA:Institute of Physics Publishing) (1995). [28] H. Enoki, T. Nakayama, J. Echigoya, Phys. Status Solidi a 129 (1992) 181. [29] H. Un’no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto, H. Kawazoe, Japan. J. Appl. Phys. 32 (1993) L1260. [30] K. Yanagawa, Y. Ohki, T. Omata, H. Hosono, N. Ueda, H. Kawazoe, Appl. Phys. Lett. 65 (1994) 406. [31] T. Minami, Y. Takeda, S. Takata, T. Kakumu, Thin Solid Films 13 (1997) 308–309. [32] Atsushi Kudo, Hiroshi Yanagi, Hideo Hosono, Hiroshi Kawazoe, Appl. Phys. Lett. 73 (1998) 220 [33] Hiroshi Yanagi, Shin-ichiro Inoue, Kazushige Ueda, Hiroshi Kawazoe, Hideo Hosono, Noriaki Hamada, J. Appl. Phys. 88 (2000) 4159 [34] Toshio Kamiya, Kenji Nomura, Hideo Hosono, Sci. Technol. Adv. Mater. 11 (2010) 044305. [35] Z.C. Jin, I. Hamberg, C.G. Grangvist., J.Appl.Phys. ,64 (1988) 5117-5131. [36] T. Minami, H. Satoo, T. Sonoda, H. Nanto, S. Takata, Thin Solid Films, 171(1989) 307-311. [37] F. Furusaki, J. Takahashi, K. Kodaira, J. of the Ceramic Society of Japan, 102 (1994) 200-205. [38] T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phy., 23 (1984) L280. [39] B.J. INGRAM, G.B. GONZALEZ, D.R. KAMMLER, M.I. BERTONI, T.O. MASON, Journal of Electroceramics, 13,(2004) 167. [40] 楊明輝,“金屬氧化物透明導電材料的基本原理”,工業材料,第179期,2001年11月,pp.134。 [41] 曲喜新、楊邦朝、姜節儉、張懷武編著,"電子薄膜材料",北京科學出版社出版,(1996),p.93 [42] A.N. Banerjee, K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials 50 (2005) 52-105. [43] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432 (2004) 488-492. [44] Z. M. Jarzebski, Pergamon Press (1973). [45] D. Adler, J. Feinleib., Physical Review B, 2 (1970) 3112. [46] N. Ohshima, M. Nakada, Y. Tsukamoto, Jap. J. Appl. Phys. 35, (1996) L1585. [47] O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, J. Magnetism and Magnetic Materials, 1627 (2001) 226-230. [48] R.N.G. Wychoff, “Crystal Structure”, Wiley and Sons, New York, 1964 [49] Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, John Wiley & Sons, p.24, p.105, p.129, p.131 (1997). [50] B. D. Cullity, S. R. Stock, 3rd edition, Prentice Hall, p.48 (2001). [51] I. Hotový, D. Búc, Vacuum, 50 (1998) 41. [52] I. Hotovy, D. Buc, S. Hascik, O. Nennewitz, Vacuum, 50 (1998)41-44 [53] G. P. Sykora, T. O. Mason, American Ceramic Society : nonstoichiometric compounds, 23 (1987) 45. [54] B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, Vacuum, 68 (2003) 149. [55] O. Kohmoto, H. Nakagawa, Y. Isagawa, A. Chayahara, Journal of Magnetism and Magnetic Materials, 1629 (2001) 226-230. [56] E. Antolini, Journal of Materials Science, 27 (1992) 3335. [57] W. Estrada, A. M. Andersson, C. G. Granqvist, J. Appl. Phys., 64 (1988) 3678. [58] I. C. Faria, M. Kleinke, A. Gorenstein, Journal of the Electrochemical Society, 145 (1998) 235. [59] M. J. Carey, A. E. Berkowitz, Journal of Applied Physics, 73 (1993) 6892. [60] I. Hotovy, J. Huran, P. Siciliano, S. Capone, Sensors and Actuators. B, 78 (2001) 126. [61] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, Synthetic Metals, 122 (2001) 87. [62] R. H. Horng, D. S. Wuu, Y. C. Lien, W. H. Lan, Applied Physics Letters, 79 (2001) 2925. [63] H.A.E. Hagelin-Weaver, J.F. Weaver, G.B. Hoflund, G.N. Salaita, Journal of Electron Spectroscopy and Related Phenomena, 134 (2004) 139-171. [64] J. Feinleib, D. Adler, Physical Review Letters, 30 (1968) 1010-1013. [65] 曾國輝,“化學”,藝軒圖書出版社,台北,2005。 [66] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 236 (2003) 27-31. [67] P. Kofstad, “Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides”, John Wiley and Sons, New York, 1972. [68] S.H. Lee, C.E. Tracy, J.R. Pitts, Electrochemical and Solid-State Letters, 7 (2004) A299-A301. [69] J.L. Yang, Y.S. Lai, J.S. Chen, Thin Solid Films, 488(2005) 242-246. [70] K. Tominaga, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi, Thin Solid Films, 334 (1998) 35-39 [71] K. Ellmer, Journal of Physics D: Applied Physics, 34 (2001) 3097-3108. [72] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma, Thin Solid Films, 483 (2005) 296– 300. [73] X. Yu, J. Ma,, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Journal of Crystal Growth, 274 (2005) 474–479. [74] B.E. Sernelius, K.-F. Berggren,Z.-C. Jim, I. Hamberg, C.G. Granqvist, Physical review B , 37(1987)10244. [75] D. A. Neamen, “Semiconductor Physics & Devices”, Second Edition, McGraw-Hill, 1999. [76] S. M. Sze, “Semiconductor Devices Physics and Technology”, 2/H’, John Wiley & Sons, 2002 [77] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices”, Prentice Hall, 2001. [78] E. Fred Schubert, “Light-Emitting Diodes”, the Nuited Kingdom at the University Press, 2003 [79] 彭江得, ”光電子技術基礎”, 儒林圖書有限公司, 1993. [80] M. Fukuda, “Optical Semiconductor Devices”, NTT Opto-electronics Laboratories Kanagawa, Japan, 1999. [81]郭浩中,賴芳儀,郭守義”LED原理與應用”, 五南圖書出版股份有限公司, 2009. [82]洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌”LED工程師基礎概念與應用”, 五南圖書出版股份有限公司, 2012. [83]羅正忠,龔正 ”半導體元件物理與其在積體電路上的應用”, 學銘圖書有限公司, 2007. [84] X.F. Chen, W.G. Zhu, O.K. Tan, Mater. Sci. and Eng. B77 (2000) 177. [85] S.B. Krupanidhi, C.-J. Peng, Thin Solid Films 305 (1997) 144. [86]吳孟奇,洪勝富,連振炘,龔正,吳忠義 ”半導體元件”, 台灣培生教育出版股份有限公司, 2010 [87] R. Deng, B. Yao, Y. F. Li, Y. M. Zhao, B. H. Li, C. X. Shan, Z. Z. Zhang, D. X. Zhao, J. Y. Zhang, D. Z. Shen, X. W. Fan, APPL. PHYS. LETT. 94, (2009) 022108. [88] S. Chen, W. Zhao, W. Liu, S. Zhang, J Sol-Gel Sci Technol 50 (2009)387–396. [89] B.D. Cullity and S.R. Stock, “Elements of XRD”, Prentice Hall,Chap. 5-2 167-171 (2001) [90]Stephen A. Campbell,“The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press, 2001 [91] S. M. Sze, “Semiconductor Devices: Physics and Technology”, 2nd edition , John Wiley & Sons, Inc., 2002, pp.55-56. [92] R.G.S. Pala, W. Tang, M.M. Sushchikh, J.N. Park, A.J. Forman, G. Wu, A. Kleiman- Shwarsctein, J. Zhang, E.W. McFarland, H. Metiu, J Catal 266 (2009) 50-58. [93] M. Lee, S. Seo, D. Seo, E. Jeong, I. K. YOO, Integrated Ferroelectrics, 68 (2004) 19. [94] T.Y. Kuo, S.C. Chen, W.C. Peng, Y.C. Lin, H.C. Lin, Thin Solid Films 519 (2011) 4940. [95] J. Pelleg, L. Z. Zevin, S. Lungo, Thin Solid Films, 197 (1991) 117. [96] L. F. Mattheiss, Physical Review B, 5 (1972) 290. [97] G. T. Tyuliev, K. L. Kostov, Physical Review B, 60 (1999) 2900. [98] K. H. Kim, K. C. Park and D. Y. Ma, Journal of Applied Physics,81(1997) 12. [99] K.C. Lai, C.C. Liu, C.H. Lu, C.H. Yeh, M.P. Houng-Lu, C.H. Yeh, M.P. Houng, Solar Energy Materials & Solar Cells 94 (2010) 397. [100] H. Wu, L.S. Wang, J. Chem. Phys. 107 (1997)16. [101] S Q Zhao, K. Zhao, Q.L. Zhou3, Y.L. Zhou, S.F. Wang, T.Y. Ning, J. Phys. D: Appl. Phys. 40 (2007) 4489. [102] D. Dimova-Malinovska, M. Nikolaeva, Vacuum 69 (2003) 227 [103] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, Appl. Phys. Lett. 83 (2003) 1029.
摘要: 本研究以射頻磁控濺鍍系統製備透明p型氧化鎳(NiO)薄膜,n型氧化鋅摻鎵(GZO)與氧化鋅摻鈦(TZO)薄膜於玻璃基板上,探討濺鍍製程參數對薄膜結構、電性與光學特性的影響。並將此p、n透明導電薄膜製備透明p-n異質接面元件,並量測其特性。 在p型氧化鎳薄膜部分,探討濺鍍功率、沉積時間與氣體比例對薄膜特性之影響。當通入氧氣比例由0%增加至100%時,會造成薄膜的穿透率大幅地下降,不過電阻率會明顯的下降,100%氧氣時具有最低的電阻率5.7×10-2 Ω-cm。當沉積時間增加從5到20分鐘時,薄膜的電阻率下降,不過穿透率會下降。增加沉積功率由75至150 W,在100 W沉積的薄膜,穿透率為62%,電阻率為1.4×10-1 Ω-cm,為p型薄膜的最佳光電特性。 使用射頻磁控濺射沉積GZO薄膜(改變沉積功率從75到150 W)與在玻璃基板上製備高透光率p(NiO)-n(GZO)異質接面二極體部分。X光繞射分析顯示,只有NiO的特徵峰(111)與GZO的特徵峰(002)、(004),表示GZO薄膜呈現出良好的c軸成長方向並垂直於玻璃基板。GZO薄膜的電阻率隨著沉積功率增加而先降低然後增加。所有GZO薄膜在可見光區的平均穿透率都能達到81%左右。光學能帶隙(Eg)隨著射頻功率的增加有變小的趨勢。GZO薄膜的最佳光電特性為125 W時的電阻率為4.1×10-3 Ω-cm,穿透率為84 %。所製備NiO/GZO異質接面二極體的導通電壓當GZO薄膜的沉積功率為75、100、125及150 W時,約為1.85、1.37、0.97和1.25 V。二極體的電荷輸送的機制可由空間電荷限制電流(SCLC)定理解釋。不同GZO沉積功率的NiO/GZO元件二極體在可見光(400~700 nm)的平均穿透率為51 %~65 %,Eg值隨著GZO沉積功率增加也呈線性減少。 使用射頻磁控濺射沉積TZO薄膜(改變沉積功率從75到150 W)與在玻璃基板上製備高透光率p(NiO)-n(TZO)異質接面二極體部分。X光繞射分析顯示,只有NiO的特徵峰(111)與TZO的特徵峰(002)、(004),表示TZO薄膜呈現出良好的c軸成長方向並垂直於玻璃基板。TZO薄膜的電阻率隨著沉積功率增加而降低。所有TZO薄膜在可見光區的平均穿透率都能達到82%左右。光學能帶隙(Eg)隨著射頻功率的增加隨之增加的趨勢。TZO薄膜的最佳光電特性為150 W時的電阻率為2.2×10-3 Ω-cm,穿透率為82%。所製備NiO/TZO異質接面二極體的導通電壓當TZO薄膜的沉積功率為100、125及150 W時,約為2.57、1.83和2.05 V。二極體的電荷輸送的機制可由空間電荷限制電流(SCLC)定理解釋。不同TZO沉積功率的NiO/TZO元件二極體在可見光(400~700 nm)的平均穿透率為63 %~68 %,Eg值隨著TZO沉積功率增加也呈線性增加。
In this study, The p-type nickel oxide (NiO), n-type gallium-doped zinc oxide (GZO) and titanium-doped zinc oxide (TZO) thin films were deposited on glass by RF magnetron sputtering. We investigated the effects of deposition parameters on structure, optics and electrical of properties of p-type NiO thin, n-type GZO and TZO thin films. Finally, transparent p-n heterojunction diodes were fabricated using the developed NiO, GZO and TZO films to study the effects of sputter power on their structure, optics and electrical properties. We investigated the effects of deposition parameters such as sputtering power, deposition time and gas ratio on properties of NiO thin films. Increasing oxygen gas ratio(0% to 100%), the transmittance of the film will result in significantly decreased, the resistivity will be significantly reduced. The oxygen gas ratio 100% of NiO thin film has low a resistivity of 5.7×10-2 Ω-cm. The resistivity of the NiO thin films decreased with increasing deposition power, but the transmittance of the NiO thin films decreased. Increasing sputter power at 75 to 150 W, the prepared films achieved the resistivity of 1.4×10-1 Ω-cm and average transmittance of 62% in the wavelength range of 400-700 nm at the RF power of 100 W. Radio frequency magnetron sputtering was used to deposit GZO thin films (deposited by changing the deposition power from 75W to 150W) on glass substrates to form p(NiO)-n(GZO) heterojunction diodes with high transmittance. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of ZnO (GZO) were observable in the NiO/GZO heterojunction devices, and the GZO thin films showed a good c-axis orientation perpendicular to the glass substrates. The resistivity of the GZO thin films decreased and then increased with increasing deposition power. All the GZO thin films had average optical transmittance 81% in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the GZO thin films were revealing that the measured Eg value decreased with increasing deposition power. The prepared films had excellent electrical properties (ρ=4.1×10-3Ω-cm) and average optical transmittance 84% in the wavelength range of 400-700 nm for theGZO thin films deposited with the RF power of 125W. In the forward bias condition, the turn-on voltages of the NiO/GZO heterojunction diodes were about 1.85 V, 1.37 V, 0.97 V, and 1.25 V as the deposition powers of the GZO thin films were 75 W, 100 W, 125 W, and 150 W, respectively. The result show that the NiO/GZO heterojunction diode was dominated by the space-charge-limited-current (SCLC) theory. All the the NiO/GZO heterojunction diodes had average optical transmittance 51~65 % in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the the NiO/GZO heterojunction diodes were revealing that the measured Eg value decreased with increasing deposition power. Radio frequency magnetron sputtering was used to deposit TZO thin films (deposited by changing the deposition power from 75W to 150W) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of ZnO (TZO) were observable in the NiO/TZO heterojunction devices, and the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. The resistivity of the TZO thin films decreased with increasing deposition power. All the TZO thin films had average optical transmittance 82% in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the TZO thin films were revealing that the measured Eg value decreased with increasing deposition power. The prepared films had excellent electrical properties (ρ=2.2×10-3Ω-cm) and average optical transmittance 82% in the wavelength range of 400-700 nm for the TZO thin films deposited with the RF power of 150W. In the forward bias condition, the turn-on voltages of the NiO/TZO heterojunction diodes were about 2.57 V, 1.83 V, and 2.05 V as the deposition powers of the TZO thin films were 100 W, 125 W, and 150 W, respectively. The result show that the NiO/TZO heterojunction diode was dominated by the space-charge-limited-current (SCLC) theory. All the the NiO/TZO heterojunction diodes had average optical transmittance 63~68 % in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the the NiO/GZO heterojunction diodes were revealing that the measured Eg value decreased with increasing deposition power.
URI: http://hdl.handle.net/11455/9428
其他識別: U0005-2308201318044900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201318044900
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.