Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9441
標題: 金屬奈米結構應用於高分子太陽電池之光電特性研究
Electrical and optical properties of polymer solar cell with metal nanostructures
作者: 巴黛芬
Devi, Parvathy
關鍵字: 聚合物有機太陽能電池
Polymer solar cells
奈米金網
表面電漿共振
電場退火
鋁穿刺
Gold nanomesh
surface plasmon resonance
electrical annealing
Al penetration
出版社: 電機工程學系所
引用: Chapter 1 – Reference [1] L.West,http://environment.about.com/od/globalwarming/a/greenhouse.htm(2012). [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., vol. 25, pp. 676-677, 1964. [3] M. A. Green, "Crystalline Silicon Photovoltaic Cells," Adv. Mater., vol. 13, pp. 1019-1022, 2001. [4] M. A. Green, "Recent developments in photovoltaics," Sol. Energy, vol. 76, pp. 3-8, 2004. [5] A. Goetzberger, C. Hebling, and H. W. Schock "Photovoltaic materials, history, status and outlook," Mater. Sci. Eng, vol. 40, pp. 1-46, 2003. [6] R. M. Swanson, "A Vision for Crystalline Silicon Photovoltaics," Prog. Photovoltaics, vol. 14, pp. 443-453, 2006. [7] H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview " J. Mater. Res., vol. 19, pp. 1924-1945, 2004. [8] J. Y. Kim , K. Lee , N. E. Coates , D. Moses , T. Q. Nguyen , M. Dante , and A. J. Heeger, "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing," Science, vol. 317, pp. 222-225, 2007. [9] D. J. Milliron , L. Gur , and A. P. Alivisatos, "Hybrid organic-nanocrystal solar cells," MRS Bulletin, vol. 30, pp. 41-44, 2005. [10] P. Kulkarni , K. M. Noone , K. Munechika , S. R. Guyer , and D. S. Ginger, "Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms," Nano Lett., vol. 10, pp. 1501-1505, 2010. [11] J. J. H. Pijpers , R. Ulbricht , K. J. Tielrooij , A. Osherov , Y. Golan , C. Delerue , G. Allan , and M. Bonn, "Assessment of carrier-multiplication efficiency in bulk PbSe and PbS," Nat. Phys., vol. 5, pp. 811 - 814, 2009. [12] J. A. Schuller , E. S. Barnard , W. S. Cai , Y. C. Jun , J. S. White , and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater, vol. 9, pp. 193–204, 2012. [13] C. X. Guo , H. B. Yang , Z. M. Sheng , Z. S. Lu , Q. L. Song , and C. M. Li, "Layered Graphene/Quantum Dots for Photovoltaic Devices," MRS Bull., vol. 49, pp. 3014 –3017, 2010. [14] Z. P. Yang , L. J. Ci , J. A. Bur , S. Y. Lin , and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett., vol. 8, pp. 446–451, 2008. [15] H. Zhou , A. Colli , A. Ahnood , Y. Yang , N. Rupesinghe , T. Butler , I. Haneef , P. Hiralal , A. Nathan , and G. A. J. Amaratunga, "Arrays of Parallel Connected Coaxial Multiwall-Carbon- Nanotube–Amorphous-Silicon Solar Cells," Adv. Mater., vol. 21, pp. 3919–3923, 2009. [16] N. M. Gabor , Z. H. Zhong , K. Bosnick , J. Park , and P. L. McEuen, "Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes," Science, vol. 325, pp. 1367-1371, 2009. [17] J. Wei , Y. Jia , Q. Shu , Z. Gu , K. Wang , D. Zhuang , G. Zhang , Z. Wang , J. Luo , A. Cao , and D. Wu, "Double-Walled Carbon Nanotube Solar Cells," Nano Lett., vol. 7, pp. 2317–2321, 2007. [18] Y. Jia , J. Wei , K. Wang , A. Cao , Q. Shu , X. Gui , Y. Zhu , D. Zhuang , G. Zhang , B. Ma , L. Wang , W. Liu , Z. Wang , J. Luo , and D. Wu, "Nanotube–Silicon Heterojunction Solar Cells," Adv. Mater., vol. 20, pp. 4594–4598, 2008. [19] E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Transactions on Electron Devices, vol. 29, pp. 300-305, 1982. [20] L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson and J. C. Hummelen, "Trapping light in polymer photodiodes with soft embossed gratings," Adv. Mater, vol. 12, pp. 189-195, 2000. [21] P. Peumans, V. Bulovic and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Appl. Phys. Lett., vol. 76, pp. 2650-2652, 2000. [22] P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys., vol. 62, pp. 243-249, 1987. [23] M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express, vol.16, pp. 5385- 5396, 2008. [24] S. Rim, S. Zhao, S. R. Scully, M. D. McGehee and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett., vol. 91, pp. 243501-1- 243501-3, 2007. [25] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat, "Thin-film silicon solar cell technology," Prog Photovoltaics Res Appl., vol. 12, pp. 113-142, 2004. [26] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express, vol. 15, pp. 16986-17000, 2007. [27] S. Lal, S. Link, N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Phot., vol. 1, pp. 641- 648, 2007. [28] M.Losurdo, M.M.Giangregorio, G.V.Bianco, A.Sacchetti, P.Capezzuto, and G.Bruno, " Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance" Solar Energy Materials & Solar Cells, vol. 93, pp. 1749-1754, 2009. [29] A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, "Controlled-reflectance surfaces with film-coupled colloidal nanoantennas", Nature, vol. 492, no. 7427, pp. 86--89, 2012. [30] F.C.Chen, J.L. Wu, C.L. Lee, Y. Hong, C.H.Kuo, and M. H. Huang, "Plasmonic - enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles", Appl. Phys. Lett., vol. 95, pp. 013305-1- 013305-3, 2009. [31] L. Qiao, D. Wang , L.Zuo , Y.Ye , J. Qian , H. Chen , and S. He, “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres,” Applied Energy, vol. 88, pp. 848- 852, 2011. [32] H.Shen, P. Bienstman, and B. Maes, " Plasmonic absorption enhancement in organic solar cells with thin active layers", J. Appl. Phys., vol. 106, pp. 073109-1- 073109-5, 2009. [33] B.Wu, T. Z.Oo, X.l. Li, X.. Liu, X. Wu, E. K. L. Yeow, H. J.Fan, N. Mathews, and T.C. Sum, " Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag Nanotriangle Arrays", J.Phys.Chem.C, vol. 116, pp. 14820−14825, 2012. [34] F.J. Beck, S. Mokkapati, and K.R. Catchpole, " Light trapping with plasmonic particles: beyond the dipole model", Optics Express, vol. 19, issue. 25, pp. 25230-2524, 2011. [35] D.H. Ko, J.R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, " Light-trapping nano-structures in organic photovoltaic cells " J. Mater. Chem., vol. 21, pp. 16293-16303, 2011. Chapter 2 – Reference [1] Luque Antonio, and Hegedus Steven, “Handbook of Photovoltaic Science and Engineering,” England: Wiley, 2003 [2] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg [3] http://www.pv-tech.org/guest_blog/top_10_pv_markets_in_2012 [4] http://www.greentechmedia.com/articles/read/global-solar-pv-capacity-passes-the-100-gigawatt-mark [5] http://www.samsungsdi.com/nextenergy/dssc-solar-cell-structure-principle.jsp [6] http://en.wikipedia.org/wiki/File:Solar_Spectrum.png [7] C. A. Gueymard, D. Myers, K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy, Vol. 73, Issue 6, pp.. 443-467, 2002. [8] C. Gueymard, “The sun''s total and spectral irradiance for solar energy applications and solar radiation models,” Solar Energy, Vol. 76, Issue 4, pp. 423-453, 2004. [9] Navin Gautam, Solar electricity: A renewable energy source, EDT, 8/31/2012. [10] http://www.imagesco.com/articles/photovoltaic/photovoltaic-pg4.html [11] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” Adv.Mater., Vol. 19, Issue 12, pp. 1551–1566, 2007. [12] C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Materials Today, Vol. 10, Issue 11, pp. 28–33, 2007. [13] S. R. Scully, and M. D. McGehee, “Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors,” J. Appl. Phys., vol. 100, pp. 034907.1-034907.5, 2006. [14] D. E. Markov, J. C. Hummelen, P. W. M. Blom, and A. B. Sieval, “Dynamics of exciton diffusion in poly(p-phenylene vinylene)/fullerene heterostructures,” Phys. Rev. B, vol. 72, pp. 045216 .1- 045216.5, 2005. [15] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., vol. 93, pp.3693-3723, 2003. [16] G. Li, V. Shrotriya, Y. Yao, J. Huang, and Y. Yang, “Manipulating regioregular poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells,” J. Mater. Chem., vol.17, pp. 3126-3140, 2007. [17] H. Hoppe and N.S. Sariciftci, “Organic solar cells: An overview,” J.Mater.Res., Vol.19, No.7, pp. 1924 - 1945, 2004. [18] Mayer, A.C.; Scully, S.R.; Hardin, B.E.; Rowell, M.W.; McGehee, M.D. “Polymer-based solar cells,” Materials today, Vol.10, No.11, pp.28-33, 2007. [19] V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, “Space-Charge Limited Photocurrent,” Phys. Rev. Lett., vol. 94, pp. 126602.1- 126602. 4 , 2005. [20] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B, vol. 72, pp. 085205.1 – 085205.9, 2005. [21] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, “Laminated fabrication of polymeric photovoltaic diodes,” Nature, vol. 395, pp. 257-260, 1998. [22] F. Zhang, W. Mammo, L. M. Andersson, S. Adamassie, M. R. Andersson, and O. Inganas, “Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells,” Adv. Mater., vol.18, pp. 2169-2173, 2006. [23] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J.V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics,”Solar Energy Materials & Solar Cells, vol. 90, pp.2150-2158, 2006. [24] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Weink, J.M. Kroon, M.A.J. Michels, and R.A. Janssen, “Nanoscale Morphology of High-Performance Polymer Solar Cells,”Nano Lett., vol. 5, issue. 4, pp.579-583, 2005. [25] R.A. Hatton, et al., “Oxidised Carbon Nanotubes as Solution Processable, High Work Function Hole-extraction Layers for Organic Solar Cells,” Org.Electron., Vol. 10, Issue 3, pp. 388–395, 2009. [26] M. D. McGehee and M. A. Topinka, “Solar cells: Pictures from the blended zone,” Nat. Mater., vol. 5, pp. 675-676, 2006. [27] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic Solar Cells,” Adv. Funct. Mater., vol. 11, pp. 15-26, 2001. [28] M. D. McGehee and M. A. Topinka, “Solar cells: Pictures from the blended zone,” Nat. Mater., vol. 5, pp. 675-676, 2006. [29] J. Nelson, “Organic photovoltaic films,” Current Opinion in Solid State and Materials Science, vol. 6, pp. 87-95, 2002. [30] J.J.M. Halls, R.H. Friend,M.D. Archer, R.D. Hill editors, Clean electricity from photovoltaics, London: Imperial College Press, 377-445, 2001. [31] C. W. Tang, “Two‐layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183- 185, 1986. [32] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., vol. 19, pp. 1924–1945, 2004. [33] D. Kearns, and M. Calvin, “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems ,” J.Chem.Phys., vol. 29, pp. 950-951, 1958. [34] R. F. Pierret, Semiconductor device fundamentals. New York: Addison- Wesley Publishing Company, Inc., 1996. [35] http://blog.disorderedmatter.eu/2008/03/05/intermediate-current-voltage-characeristics-of-organic-solar-cells/ [36] J. Liu, Y. Shi, and Y. Yang, “Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices,” Adv. Funct. Mater., vol. 11, pp. 420-424, 2001. [37] D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, J. C. Hummelen, D. Badt, H. Schindler, and N. S. Sariciftci, “The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes,” Synth. Met., vol. 118, pp. 1-9, 2001. [38] J. K. J. Van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, “Relating the morphology of poly(p-phenylene vinylene)/ Methanofullerene Blends to solar cell performance,” Adv. Funct. Mater., vol. 14, pp. 425-434, 2004. [39] E. A. Katz et al., “Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions,” J. Appl. Phys., vol. 90, pp. 5343- 5350, 2001. [40] P. Schilinsky, C. Waldauf, J. Hauch, and C. J. Brabec, “Simulation of light intensity dependent current characteristics of polymer solar cells,” J. Appl. Phys., vol. 95, pp. 2816 - 2819, 2004. [41] H. Hoppe, N. Arnold, N. S. Sariciftci, and D. Meissner, “Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 80, pp. 105-113, 2003. [42] H. Hoppe, N. Arnold, D. Meissner, and N. S. Sariciftci, “Modeling of optical absorption in conjugated polymeryfullerene bulkheterojunction plastic solar cells,” Thin Solid Films, vol. 451–452, pp. 589-592, 2004. [43] J. Peet, M.L. Senatore, A.J. Heeger, and G.C. Bazan, “The role of processing in the fabrication and optimization of plastic solar cell,” Adv. Mater., vol. 21, 15211–15527, 2009. [44] H. Jin, M. Tuomikoski, J. Hiltunen, P. Kopola, A. Maaninen, and F. Pino, “Polymer–electrode interfacial effect on photovoltaic performances in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester based solar cells,” J. Phys. Chem. C, vol. 113, pp.16807–16810, 2009. [45] H.-Yu Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics, vol. 3, pp.649 – 653, 2009. [46] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, and G.C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater., vol. 6, pp. 497–500, 2007. [47] E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Transactions on Electron Devices, vol. 29, pp. 300-305, 1982. [48] L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson and J. C. Hummelen, "Trapping light in polymer photodiodes with soft embossed gratings," Adv Mater., vol. 12, vol. 189-195, 2000. [49] P. Peumans, V. Bulovic and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Appl. Phys. Lett., vol. 76, pp. 2650-2652, 2000. [50] P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys., vol. 62, pp. 243-249, 1987. [51] M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express, vol. 16, pp. 5385- 5396, 2008. [52] S. Rim, S. Zhao, S. R. Scully, M. D. McGehee and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett., vol. 91, 243501.1- 243501. 3, 2007. [53] V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat, "Thin-film silicon solar cell technology," Prog Photovoltaics Res Appl., vol. 12, pp. 113-142, 2004. [54] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express., vol.15, pp. 16986-17000, 2007. [55] J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, Wanli Ma, X. Gong, and A.J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Func. Mater., vol. 18, pp. 572–586, 2006. [56] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emer, and Y. Yang, “High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, pp. 864–868, 2005. [57] J.K.J. van Duren, X. Yang, J. Loos, C.W.T. Bulle - Lieuwma, A.B. Sieval, J.C. Hummelen, and R.A.J. Janssen, “Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance,” Adv. Funct. Mater., vol. 14, pp. 425–434, 2004. [58] H.-W. Tsai, Z. Pei, and Y.-J. Chan, “A conductor/insulator/conductor complex layer at anode for current enhancement in a polymer solar cell,” Appl. Phys. Lett., vol. 93, pp. 073310.1–073310.3, 2008. [59] H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205–213, 2010. [60] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 61, pp. 97–105, 2000. [61] R.B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A.K. Pradhan, U.N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/ p-Si heterojunction diodes,” Appl. Phys. Lett., vol. 91, pp. 191111.1–191111.3, 2007. [62] A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, and J. Van de Lagemaat, “Plasmon enhanced solar energy conversion in organic bulk heterojunction Photovoltaics,” Appl. Phys. Lett., vol. 92, pp. 013504.1–013504.3, 2008. [63] S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, and Y.C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett., vol. 93 pp. 073307.1–073307.3, 2008. [64] E. Bundgaard, F.C. Krebs, “Low band gap polymers for organic photovoltaics,” Solar Energy Materials & Solar Cells, vol. 91, pp. 954–985, 2007. [65] C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today, vol. 10, issue. 11, pp. 28–33, 2007. [66] P. Peumans, V. Bulovic and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,”Appl. Phys. Lett., vol. 76, pp. 2650–2652, 2000. [67] J. Liu, M. A. G. Namboothiry and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,”Appl. Phys. Lett., vol. 90, pp. 133515 - 133517, 2007. [68] B. O’Connor, D. Nothern, K. P. Pipe and M. Shtein, “High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers,”Opt. Express, vol. 18, pp. A432–A443, 2010. [69] M. Niggemann, M. Glatthaar, P. Lewer, C. M€uller, J. Wagner and A. Gombert, "Functional microprism substrate for organic solar cells," Thin Solid Films, vol. 511–512, pp. 628–633, 2006. [70] S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett., vol. 91, pp. 243501–243503, 2007. [71] K. Tvingstedt, V. Andersson, F. Zhang and O. Inganas, “Folded reflective tandem polymer solar cell doubles efficiency,”Appl. Phys. Lett., vol. 91, pp. 123514–123516, 2007. [72] K. Tvingstedt, S. Dal Zilio, O. Ingan€as and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Optics Express, Vol. 16, Issue 26, pp. 21608-21615, 2008. [73] S. D. Zilio, K. Tvingstedt, O. Inganas and M. Tormen, “Fabrication of a light trapping system for organic solar cells,”Microelectron. Eng., Vol. 86, Issues 4 - 6, pp. 1150–1154, 2009. [74] C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt., vol. 34, issue. 14, pp. 2476–2482, 1995. [75] J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys., vol. 84, issue.1, pp. 81– 98, 1998. [76] Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett., vol. 89, pp. 111111.1-111111.3 , 2006. [77] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater., vol. 14, issue. 10, pp. 1005–1011, 2004. [78] Z. Yu, A. Raman and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, pp. 17491–17496, 2010. [79] Z.Yu, A.Raman and S.Fan , “Fundamental limit of light trapping in grating 
structures,” Optics Express, Vol. 18, Issue S3, pp. A366-A380, 2010. [80] J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys,. Vol. 116, pp. 6755–6759, 2002. [81] P. Royer, J.P. Goudonnet, R.J. Warmack, and T.L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B., vol. 35, pp. 3753–3759, 1987. [82] G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett., vol. 82, pp. 3811–3813, 2003. [83] W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824–830, 2003. [84] S.Hayashi, K.Kozaru, and K.Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun., vol. 79, pp. 763–767, 1991. [85] Stenzel, A.Stendal, K.Voigtsberger, and C.von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells, vol. 37, pp. 337–348, 1995. [86] R.C.Joseph, and N.J.Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Appl. Phys. Lett,. Vol. 89, pp. (2006) 153120.1 – 153120.3, 2006. [87] J.K.Mapel, M.Singh, M.A.Baldo, and K.Celebi, “Plasmonic excitation of organic double heterostructure solar cells",” Appl. Phys. Lett., vol.90, pp.121102.1- 121102.3, 2007. [88] S.Pillai, K.R.Catchpole, T.Trupke, and M.A.Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys,. Vol.101, pp. 093105.1 – 093105.8, 2007. [89] A.J.Morfa, K.L.Rowlen, T.H.Reilly, M.J.Romero, and J.V.D.Lagemaat, “Plasmon- enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett., vol. 92, pp. 013504.1 – 013504.3, 2008. [90] T.H.Reilly, J.vanderLagemaat, R.C.Tenent, A.J.Morfa, and K.L.Rowlen, “Surface- plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett., vol. 92, pp. 243304.1- 243304.3, 2008. [91] J.Bellessa, C.Bonnand, J.C.Plenet, and J.Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett., vol. 93, pp. 036404.1- 036404.4, 2004. [92] H.Carl, Z.Michael, and K.Bengt, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett., vol. 92, pp.013113.1- 013110.3, 2008. [93] R.B.Konda, R.Mundle, H.Mustafa, O.Bamiduro, A.K.Pradhan, U.N.Roy, and Y.Cui, A.Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett., vol. 91, pp. 191111.1- 191111.3, 2007. [94] M.Westphalen, U.Kreibig, J.Rostalski, H.Luth, and D.Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 61, pp. 97–105, 2007. [95] W.J.Yoon, and P.R.Berger, “4.8% efficient poly (3-hexylthiophene) – fullerene derivative (1:0.8) bulk hetero junction photovoltaic devices with plasma treated AgOx /indium tin oxide anode modification,” Appl. Phys. Lett., vol.92, pp.013306.1- 013306.3, 2008. [96] K.R.Catchpole, and A.Polman, “Plasmonic solar cells,” Opt. Express, vol. 16, pp. 21793–21800, 2008. Chapter 3 – Reference [1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, pp. 668 - 677, 2002. [2] E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater., vol. 16, pp. 1685 – 1706, 2004. [3] S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon., vol.1, pp. 641- 648, 2007. [4] M.C. Daniel, and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., vol. 104, pp. 293 – 346, 2003. [5] R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir, vol. 25, pp. 13840 – 13851, 2009. [6] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications,” Chem. Rev., vol. 111, pp. 3669-3712, 2011. [7] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Rev. Phys. Chem., vol. 58, pp. 267- 297, 2007. [8] P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir, vol. 12, pp. 788 - 800,1996. [9] C. L. Haynes, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B , vol.107, pp.7426 – 7433, 2003. [10] J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 379, pp. 920 – 930, 2004. [11] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices,” Adv. Mater., vol. 13, pp. 1501 – 1505, 2001. [12] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics ,”Nature, vol. 424, pp. 824 – 830, 2003. [13] H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,”Appl. Phys. Lett., vol. 80, pp. 404 - 406 , 2002. [14] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength Focusing and Guiding of Surface Plasmons ,” Nano Lett., vol. 5, pp. 1399 - 1402, 2005. [15] R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Optics Letters, Vol. 25, Issue 11, pp. 844-846, 2000. [16] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205 - 213, 2010. [17] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys., vol.57, issue. 3, pp. 783-826, 1985. [18] K. Kneipp, , Y. Wang, , H. Kniepp, , L. T. Perelman, , I. Itzkan, , R. R. Dasari, , and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett., vol. 77, issue, pp.1667-1670, 1997. [19] S. M. Nie, and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, issue. 5303, pp. 1102-1106, 1997. [20] S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A, vol.97, issue. 3, pp. 996-1001, 2000. [21] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, vol. 289, issue. 5845, pp. 1757-1760, 2000. [22] K. Li, M. I.Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett., vol. 91, issue. 22, pp. 227402.1- 227402.4, 2003. [23] T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning nearfield optical microscopy,” J. Microsc., vol. 202, pp. 72-76, 2001. [24] X. Zhang, and Z. W. Liu, “Super lenses to overcome the diffraction limit,” Nature Mater., vol. 7, issue.6, pp. 435-441, 2008. [25] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett., vol. 81, issue. 10, pp. 1762-1764, 2002. [26] N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science, vol. 317, issue. 5845, pp. 1698-702, 2007. [27] S. Zavyalov, A. Timofeev, A. Pivkina and J. Schoonman, “Nanostructured Materials:Selected Synthesis Methods, Properties and Applications” edited by P Knauth and JSchoonman. Kluwer Academic Publishers, NY, 2004. [28] A.A. Lushinikov and A.J. Simonov, “Surface plasmons in small metal particle,” vol. 270, issue. 1, pp.17-24, 1974. [29] Y. Chu, E. Schonbrun, T. Yang and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett., vol. 93, 181108.1 – 181108.3, 2008. [30] J.J. Brege, C.E. Hamilton, C.A. Crouse and A.R. Barron, “Ultra small copper nanoparticles from a hydrophobically immobilized surfactant template,” Nano Lett., vol. 9, issue. 6, pp. 2239- 2242, 2009. [31] P. Colomban, G. March, L. Mazerolles, T. Karmous, N. Ayed, A. Ennabli, and H. Slim. “Raman identification of materials used for jewellery and mosaics in ifriqiya,” J. Raman Spectrosc., vol. 34, pp.205 - 2013, 2003. [32] Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc., vol. 82, pp. 689 - 695, 1999. [33] P. Colomban, “The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure,” J. Nano Res., vol. 8, pp. 109 - 132, 2009. [34] Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus cup – a roman nanotechnology,” Gold Bull., vol. 40, pp. 270 - 277, 2007. [35] S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,”Appl. Phys. Lett., vol. 81, pp. 1714–1716, 2002. [36] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles, “Opt. Lett., vol. 23, pp. 1331–1333, 1998. [37] N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C, vol. 113, pp. 2784 - 2791, 2009. [38] K. H. Fung, and C. T. Chan, “A computational study of the optical response of strongly coupled metal nanoparticle chains,” Opt. Commun., 2008, vol. 281, pp.855 - 864, 2008. [39] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater., vol. 2, pp. 229–232, 2003. [40] F. Koenderink, R. de Waele, J. C. Prangsma, A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of sub-wavelength metal nanoparticle waveguides,” Phys. Rev. B, vol. 76, pp. 1- 4, 2007. [41] J. Grand, P.M. Adam, A.S. Grimault, A. Vial, M.L. De la Chapelle, J.L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics, vol. 1, pp. 135–140, 2006. [42] Stranik, R. Nooney, C. McDonagh, B.D MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics, vol. 2, pp. 15–22, 2007. [43] X. D. Zhou, S. Virasawmy, W. Knoll, K.Y. Liu, M.S. Tse, and L.W. Yen, “Profile simulation and fabrication of gold nanostructures by separated nanospheres with oblique deposition and perpendicular etching,” Plasmonics, vol. 2, pp. 217–230, 2007. [44] T.W.H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics, vol. 2, pp. 47–50, 2007. [45] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, 2007. [46] S. Eustis, and M.A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol. 35, pp. 209–217,
摘要: 由於可能實踐低成本製程、輕巧、簡易製程以及可撓性,有機高分子太陽能電池已具有取代無機太陽能電池的潛力。在增加有機高分子太陽能電池的效率上,其中一種方法為太陽能電池表面採用金屬奈米結構,使表面電荷的數量增加引發電漿共振,進而增加太陽能電池的光電流。另一種方法為經由電退火,而使太陽能電池的光電流增加。 在本篇論文中,於透明導電玻璃(ITO)製程奈米金網技術可提升聚合物有機太陽能電池光電流,且藉由調變奈米金點的厚度,探討奈米金網所引發的表面電漿共振(SPR)與電漿空穴所造成之影響。及調變不同的反向偏壓使太陽能電池電場退火,探討電場退火對太陽能電池特性之影響。首先將奈米金網室溫製程於透明導電玻璃(ITO)。其製程方式將金薄膜蒸鍍於聚合物奈米球上層,其後使用剝離製程將緊密排列聚合物奈米球(直徑~50 nm; 密度~1010/cm2),使其圖案化形成奈米金網。運用此技術,聚合物有機太陽能電池之短路電流密度自7.02 mA/cm2提升到14.2 mA/cm2,使用光電轉換效率 分析儀量測轉換效率可自1.9%提升到3.2%。運用穿透反射吸收光譜探討表面離子誘發於波長580 nm 具有誘發特性以增加光電流。有機高分子太陽能電池元件的表面電漿共振,是使用紫外光可見光光譜儀探討分析其光學特性,及使用光電轉換效率儀器(IPCE)量測探討分析其電學特性。 實驗結果顯示,採用奈米金網的太陽能電池,其吸收光譜中可明顯地觀察到峰值位置為580 nm,可能為表面電漿共振之影響。且太陽能電池的短路電流及轉換效率,分別由7.02 mA/cm2 提升到 14.2 mA/cm2,及由1.9%提升至3.2%。在光電轉換效率儀器(IPCE)所量測的圖譜中,可明顯地觀察到約在580 nm峰值位置有所提升,與前述的吸收光譜結果相符。由結果可得知,表面電漿共振所引發的影響於580 nm峰值位置上,進而提升太陽能電池的光電流與轉換效率。在調變奈米金點的厚度方面,由於奈米金點的厚度增加,使得奈米金點直徑也隨之增加,進而造成局部的表面電漿共振波長產生紅位移,峰值位置由原本的532nm偏移到611nm。 在電場退火的實驗中,使用P3HT:PCBM製作異質接面太陽能電池,施加逆向偏壓進行電場退火。實驗結果顯示,未使用電退火的太陽能電池,其短路電流、填充因子、開路電壓及轉換效率,分別為7.77 mA/cm2、53%、0.63 V及2.37%。而在經過電壓為 -6V 電退火的太陽能電池,其轉換效率小幅提升至為2.59%。藉由電退火改善太陽能電池的聚合物鍊取向,增加電荷的遷移率,進而提高了效率。使用X射線光電子能譜(XPS)於高電場下分析金屬-有機層P3HT:PCBM之界面。於電場退火後其消耗能量為0.366 mJ/cm2,於XPS的分析鋁與碳的原子濃度中得知鋁金屬會深入主動層形成鋁穿刺以增加金屬接觸面積以減少、改善金屬接面電阻值。
Polymer solar cells (PSCs) have attracted great interest as potential alternatives for inorganic-based solar cells due to their possibility of low-cost fabrication, light-weight, simple process, and mechanical flexibility. Efficiency of the polymer solar cell can be improved by various methods. The incorporation of metal nanostructures to increase the photocurrent by the presence of surface plasmon and also another possible way to improve the device is electrical annealing through the electrode. In this thesis, a gold (Au) nanomesh layer was manufactured on an ITO-coated glass substrate at room temperature. The Au nanomesh was used to induce surface plasmon resonance (SPR) to enhance the photocurrent of a polymer solar cell. The Au nanomesh was manufactured by lift-off process on closely packed PS nanospheres (diameter ~50 nm; density ~1010/cm2). The PS nanospheres were fabricated by modified block copolymer nano-patterning on ITO. A transmittance–reflection– absorbance spectrum was used to explore the induced surface plasmon. An extinction peak was observed at ~580 nm indicate the possibility of Au nanomesh induced surface plasmon resonance. The short-circuit current density of the polymer solar cell was enhanced from 7.02 to 14.2 mA/cm2 by the addition of Au nanomesh. Consequently, the power conversion efficiency enhanced from 1.9% to 3.2%. By the normalized input photon-to-current conversion efficiency (IPCE) measurement, enhanced photocurrent conversion efficiency at approximately 580 nm was observed that coincided with the extinction spectrum, indicating that the surface plasmon enhanced the photocurrent. Moreover, we deposit different thickness of gold nanodot to examined the optical properties of Au nanodots, and analyze the effect of surface plasmon and plasmonic nano cavities. While the deposition of gold thickness increases, the diameter of the gold nanodot also increases. The localized surface plasmon resonance peak is red shifted from 534 nm to 611 nm when the diameter of the Au nanodot increased. The photoactive layer poly(3-hexylthiophene) : 6,6-phenyl-C61-butyric acid methyl ester film and 300 nm a-Si with Au nanodots have a higher absorbance as compared to the without Au nanodots. Scattered light efficiently couple the incident light into waveguide mode to the a-Si film dramatically increasing the optical path and absorption of the light inside the film. Combine effect of local field enhancement from LSP and guided modes are the reason for the strong enhancement in higher wavelength. Also, we demonstrated the effect of electrical annealing treatment under different reverse bias on the performance of bulk heterojunction photovoltaic cells based on P3HT:PCBM. After electrical annealing at -6 V, the polymer solar cell exhibits an 7.77 mA/cm2 short circuit current density, an 0.53 fill factor, and an 0.63 V open circuit Voltage. A corresponding efficiency of 2.59 % was achieved. In comparison, solar cell without electrical annealing exhibits power conversion efficiency of 2.37 %. This enhanced efficiency is attributed to the modified orientation of the polymer chains inside the photoactive layer that increases the mobility of charge carriers. X-ray photoelectron spectroscopy (XPS) was used to investigate the metal-organic interfaces of a P3HT:PCBM bulk-heterojunction (BHJ) organic solar cell under a high electrical field. This high electrical field was built by applying reverse bias to the solar cell. In addition, after electrical annealing, the Al cathode will penetrate further into the active layer increases the contact area and reduces the contact resistance. This Al penetration was confirmed by the depth profile of atomic concentration in the X-ray photoemission spectroscopy. In addition, the reverse current density was quite low, consumed only a small amount of energy (0.36 mJ/cm2) during stressing. The intermixing and atomic concentration gradient of Al and C shown by an XPS depth profile confirmed the penetration of Al into the polymer layer under a large electrical field, in which improved the contact properties.
URI: http://hdl.handle.net/11455/9441
其他識別: U0005-1807201317040100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201317040100
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.