Please use this identifier to cite or link to this item:
標題: 水楊酸甲酯吸引天敵對小黃瓜上棉蚜(Aphis gossypii Glover) (Hemiptera: Aphididae) 族群抑制效果評估
Evaluation the effectiveness of methyl salicylate on attracting natural enemies and reducing pest population: cucumber cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) on cucumber
作者: 董耀仁
Yaw-Jen Dong
關鍵字: 水楊酸甲酯
Methyl salicylate
Natural enemies
Cotton aphid
Biological control
引用: 余志儒。1994。洋香瓜品種對棉蚜之抗性及其對日光蜂發育與繁殖之影響。國立中興大學碩士論文。69頁。 余志儒。2009。乳化大豆油對棉蚜 (同翅目:常蚜科) 之致死效果。台灣農業研究 58(4):265–272。 余志儒、陳炳輝、劉玉章。1999。棉蚜小蜂在三種洋香瓜品種上之發育、繁殖、氣味偏好及對棉蚜族群之影響。中華昆蟲19:101–111。 邱政發。2007。蚜蟲的生物防治。苗栗區農業專訊。40:5–6。 林立。2008。菸草浸液防治棉蚜之研究。花蓮區農業專訊 63:9–11。 林秀芬、劉顯達。2008。蚜蟲天敵知多少。科學發展 430:49–52。 陳昇寬。2009。棉蚜。植物保護圖鑑系列19─甜瓜保護。p.12–-14。 陶家駒 1990 台灣省蚜蟲誌 台灣省立博物館印 台北,台灣。327pp. 彭仁君、劉玉章。2001。棉蚜小蜂寄生作用對棉蚜發育、存活與繁殖的影響。植保會刊43: 39–46。 Agrawal, A. A., A. Janssen, J. Brun, M. A. Posthumus, and M. W. Sabelis. 2002. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5: 377–385. Allsopp, E., G. J. PrinslooL, E. Smart, and S. Y. Dewhirst. 2014. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interactions 8: 421–427. Blackman, R. L., and V. F. Eastop. 1984. Aphids on the world''s crops: an identification and information guide. Wiley, New York. 476 pp. Bolter, C. J., M. Dicke, J. J. A. Van Loon, J. H. Visser, and M. A. Posthumus. 1997. Attraction of Colorado potato beetles to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23: 1003–1023. Campbell, C. A. M., J. Pettersson, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1993. Spring migration of Damson-Hop aphid, Phorodon humuli (Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. J. Chem. Ecol. 19: 1569–1576. Chan, C. K., A. A. Forbes, and D. A. Raworth. 1991. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Res. Branch Tech Bull. 3E: 1–216. Chang, Y. M., C. H. Hsiao, W. Z. Yang, S. H. Hseu, Y. J. Chao, and C. H. Huang. 1987. The occurrence and distribution of five cucurbit viruses on melon and watermelon in Taiwan. J. Agric. Res. China. 36: 389–397. De Boer, J. G., and M. Dicke. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30: 255–271. Dicke, M. 1988. Prey preference of the phttoseiid mite Typhlodromus pyri: 1. Response to volatile kairomones. Exp. Appl. Acarol. 4: 1–13. Dicke, M. 1999. Evolution of induced indirect defense of plants, pp. 62–88. In R. Tollrian and C. J. Harvell (eds.), The ecology and evolution inducible defenses. Princeton University press, New Jersey 395 pp. Dicke, M. 2015. Herbivore–induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J. Indian Inst. Sci. 95: 35–42. Dicke, M. and I. T. Baldwin. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15:167–175. Dicke, M., and M. W. Sabelis. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zoo. 38: 148–165. Dicke, M., M. W. Sabelis, J. Takabayashi, J. Bruin, and M. A. Posthumus. 1990. Plant strategies of manipulating predatory-prey interactions through alleochemicals: prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118. Dicke, M., T. A. Van Beek, M. A. Posthumus, N. Ben Dom, H. Van Bokhoven, and A. De Groot. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16: 381–396. Dicke, M., J. Takabayashi,M. A. Posthumus, C. Schutte, and O. E. Krips. 1998. Plant-phytoeiid interactions mediated by prey-induced plnat volatiles: variation in production of cues and variation in responses of predatory mites. Exp. Appl. Acarol. 22: 311–333. Dicken, J. C. 2001. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Afric. For. Entomol. 2: 167–172. Dieryckx, C., V. Gaudin, J. W. Dupuy, M. Bonneu, V. Girard, and D. Job. 2015. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. Front. Plant Sci. 6: 859. Dong, Y. J., and S. Y. Hwang. 2016. Evaluation of the effectiveness of four herbivore-induced plant volatiles on attracting natural enemies. J. Taiwan Agric. Res. 65: 173–183. Drukker, B., J. Bruin, and M. W. Sabelis. 2000. Anthocorid predators learn to associated herbivore induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25: 260–265. Gadino, A. N., V. M. Walton, and J. C. Lee. 2012. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol. Control. 63: 48–55. Geervliet, J. B. F., M. A. Posthumus, L. E. M. Vet, and M. Dicke. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested food plants of Pieris species. J. Chem. Ecol. 23: 2935–2954. Glinwood, R., and J. Pettersson. 2000. Host plant choice in Rhopalosiphum padi spring migrants and the role of olfaction in winter host leaving. Bull. Entomol. Res. 90: 57–61. Gore, J., D. Cook, A. Catchot, B. R. Leonard, S. D. Steward, G. Lorenz, and D. Kerns. 2013. Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the Southern United States. J. Econ. Entomol. 106: 1430–1439. Groux, R., O., Hilfiker, C., Gouhier-Darimont, M. F. G. V. Peñaflor, M. Erb, and P. Reymond. 2014. Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. J. Chem. Ecol. 40: 754–759. Guerrieri, E. and M. C. Digilio. 2008. Aphid-plant interactions: a review. J. Plant Interact. 3:223–232. Hardie, J., R. Isaacs, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1994. Methyl salicylate and (−)–(1R, 5S) –myrtenal are plant–derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20: 2847–2855. Hatano, E., G. Kunert, J. P. Michaud, and W. W. Weisser. 2008. Chemical cues mediating aphid location by natural enemies. Eur. J. Entomol. 105:797–806. Henning, J. A., Y. S. Peng, M. A. Montague, and L. R. Teuber. 1992. Honey bee (Hymenoptera: Apidae) behavioral response to primary Alfalfa (Rosales: Fabaceae) floral volatiles. J. Econ. Entomol. 85: 233–239. Hilker, M. and T. Meiners. 2011. Plants and insect eggs: how do they affect each other? Phytochemistry. 72: 1612–1623. Hsu, J. C., L. G. Li, and H. T. Feng. 2005. Susceptibility of cowpea aphid (Aphis craccivora), cotton aphid (Aphis gossypii), turnip aphid (Lipaphis erysimi), and green peach aphid (Myzus persicae) to several insecticides in Taiwan. Plant Prot. Bull. 47: 115–127. James, D. G. 2003a. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 29: 1601–1609. James, D. G. 2003b. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ. Entomol. 32: 977–982. James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol. 31: 481–495. James, D. G. 2006. Methyl salicylate is a field attractant for the goldeneyed lacewing, Chrysopa oculata. Biocontrol Sci. Technol. 16: 107–110. James, D. G., and T. R. Grasswitz. 2005. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50: 871–880. James, D. G., and T. S. Price. 2004. Field-testing of methyl-salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 30: 1613–1628. Kalaivani, K., M. M. Kalaiselvi, S. Senthi-Nathan. 2016. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 6: 34498. Kant, M. R., W. Jonckheere, B. Knegt, F. Lemos, J. Liu, B. C. J. Schimmel, C. A. Villarroel, L. M. S. Ataide, W. Dermauw, J. J. Glas, M. Egas, A. Janssen, T. Van Leeuwen, R. C. Schuurink, M. W. Sabelis, and J. M. Alba. 2015. Mechanisms and ecological consequence of plant defence induction and suppression in herbivore communities. Ann. Bot. 115: 1015–1051. Kaygin, T. A., G. Gorur, and F. Cota. 2008. Contribution to aphid (Homoptera: Aphididae) species damaging on woody plants in Bartin, Turkiye. Int. J. Nat. Eng. Sci. 2: 83–96. Kerns, D. L., and M. J. Gaylor. 1992. Insecticide resistance in field populations of cotton aphid (Homoptera: Aphididae). J. Econ. Entomol. 85: 1–8. Kessler, A., and I. T. Baldwin. 2001. Function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144. Kessler, A., and I. T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53: 299–328. Lee, J. C. 2010. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Chem. Ecol. 39: 653–660. Mainak, B. 2017. The push-pull strategy: A new approach to the eco-friendly method of pest management in agriculture. J. Entomol. Zool. Stud. 5: 604–607. Mallinger, R. E., D. B. Hogg, and C. Gratton. 2011. Methyl Salicylate Attracts Natural Enemies and Reduces Populations of Soybean Aphids (Hemiptera: Aphididae) in Soybean Agroecosystems. J. Econ. Entomol. 104: 115–124. Mithofer, A., and W. Boland. 2012. Plant defense against herbivores: chemical aspects. Ann. Rev. Plant Biol. 63: 431–450. Mumm, R. & Dicke, M. 2010. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zoo. 88: 628–667. Ninkovic, V., E. Ahmed, R. Glinwood, and J. Pettersson. 2003. Effects of two types of semiochemicals on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric. For. Entomol. 5: 27–33. Orre, G. U. S., S. D. Wratten, M. Jonsson, and R. J. Hale. 2010. Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biol. Control 53: 62–67. Ozawa, R., T. Shimoda, M. Kawaguchi, G. Arimura, J. Horiuchi, T. Nishioka, and J. Takabayashi. 2000. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113: 421–433. Pappas, M. L., C. Broekgaarden, G. D. Broufas, M. R. Kant, G. J. Messelink, A. Steppuhn, F. Wäckers, N. M. Van Dam. 2017. Induced plant defences in biological control of arthropod pests: a double-edged sword. Pest Manag. Sci. 73: 1780–1788. Park, S.W., E. Kaimoyo, D. Kumar, S. Mosher, and D. F. Klessig. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113–116. Peñaflor, M. F. G. V., and J. M. S. Bento. 2013. Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop. Entomol. 42: 331–343. Pettersson, J., J. A. Pickett, B. J. Pye, A. Quiroz, L. E. Smart, L. J. Wadhams, and C. M. Woodcock. 1994. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera, Aphididae), and other aphids in cereal fields. J. Chem. Ecol. 20: 2565–2574. Pierik, R., C. L. Ballare, and M. Dicke. 2014. Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ. 37: 1845–1853. Rodriguez-Saona, C., I. Kaplan, J. Braasch, D. Chinnasamy and L. Williams. 2011. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control 59: 294–303. Schoonhoven L. M., J. J. A. van Loon, and M. Dicke. 2005. Insect-Plant Biology. Oxford University Press. United Kingdom. 400 pp. Scutareanu, P., B. Drukker, J. Bruin, M. A. Posthumus, and M. W. Sabelis. 1997. Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23: 2241–2260. Shimoda, T., R. Ozawa, G. I. Arimura, J. Takabayashi and T. Nishioka. 2002. Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate. Appl. Entomol. Zool. 37: 535–541. Shu, T. C. 1980. Contributions to the study of aphididae of Taiwan. National Taiwan University press. Taipei. 283 pp. (in Chinese with english abstract ) Shulaev, V., P. Silverman, and I. Raskin. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385: 718 –721. Simpson, M., G. M. Gurr, A. T. Simmons, S. D. Wratten, D. G. James, G. Leeson, H. I. Nicol, and G. U. S. Orre-Gordon. 2011a. Attract and reward: Combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 48: 580–590. Simpson, M., G. M. Gurr, A. T. Simmons, S. D. Wratten, D. G. James, G. Leeson, H. I. Nicol, and G. U. S. Orre-Gordon. 2011b. Field evaluation of the ''attract and reward'' biological control approach in vineyards. Ann. Appl. Biol. 159: 69–78. Tao, C. C. 1972. Integrated control report of cruciferous vegetables aphids. Taiwan Agricul. 8: 140–154. Van Poecke, R. M. P., and M. Dicke. 2004. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol. 6: 387–401. Vergnes , S. N. Ladouce, S. Fournier, H. Ferhout, F. Attia, and B. Dumas. 2014. Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis. Front Plant Sci. 23: 477. Vinson, S. B. 1976. Host selection by insect parasitoids. Ann. Rev. Entomol. 21:109–133. Vlot, A. C., D. F. Klessig, and S.W. Park. 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11: 436 –442. Wimer, A. F., T. P. Kuhar, C. C. Brewster, and C. R. Philips. 2014. Population dynamics of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Measuring the effects of methyl salicylate and predator recruitment in potato. J. Entomol. Sci. 49:110–120. Woods, J. L., D. G. James, J. C. Lee, and D. H. Gent. 2011. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Exp. Appl. Acarol. 55: 401–416. Yu, J. Z., and B. H. Chen. 2001. Effect of concealment and rearing density on the development and survival of Lemnia biplagiata (Coleoptera: Coccinellidae). J. Agric. Res. China 50: 68–74. Yu, J. Z., B. H. Chen, and Y. C. Liu. 1997. Resistance of three muskmelon cultivars to Aphis gossypii Glover (Homoptera: Aphididae). Chin. J. Entomol. 17: 245–256. Zhu, J., and K. C. Park. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 31: 1733–1746.
摘要: 棉蚜 (Aphis gossypii Glover) 是世界性作物害蟲,在台灣棉蚜也是小黃瓜重要害蟲。因為棉蚜對農藥的抗藥性以及農藥殘留的食安問題,有必要發展安全、永續及有效的方法以代替傳統噴施殺蟲劑的防治方法。水楊酸甲酯 (Methyl salicylate) 是一種蟲害誘導揮發性成分 (Herbivore induced plant volatiles) 除了可以影響蚜蟲的行為反應外,田間施用水楊酸甲酯可吸引蚜蟲的天敵並降低蚜蟲的族群數量。因此本論文首先以黃色黏板搭配水楊酸甲酯於農業試驗所試驗田區進行調查可誘捕到的天敵種類,其次於室內及戶外以小黃瓜盆栽試驗探討施用水楊酸甲酯對棉蚜的直接與間接影響,包括有翅型棉蚜到寄主植物、生長發育、族群成長、水楊酸甲酯對棉蚜天敵的最佳誘引濃度、水楊酸甲酯的有效距離、水楊酸甲酯對綿蚜的生物防治效果及比較水楊酸甲酯及棉蚜的存在與否對棉蚜天敵停留於小黃瓜植株的影響。再者本論文亦比較小黃瓜分別施用水楊酸甲酯與棉蚜防治藥劑派滅淨 對棉蚜防治效果的差異。試驗結果顯示搭配水楊酸甲酯的黃色黏板誘捕到束小瓢蟲 (Scymnus Pullus sodalis Weise)、四斑小瓢蟲 (Scymnus Pullus quadrillum Motschulsky)、褐草蛉 (Brown lacewing)、南方小黑花椿象 (Orius strigicollis Poppius)、小鐮花椿象 (Cardiastethus exiguus Poppius) 及中華斑腿盲椿象 (Campylomma chinesis Schuh) 的數量顯著多於對照組;但水楊酸甲酯搭配黃色黏板對上述天敵誘引的效果取決於使用濃度。水楊酸甲酯對棉蚜無直接不利影響,包括有翅型棉蚜到寄主植物、棉蚜的生殖、生長發育及族群成長。有0.1%水楊酸甲酯的小黃瓜植株於遭受棉蚜危害時,可吸引棉蚜天敵束小瓢蟲前來並且有效降低小黃瓜植株上棉蚜的數量。在距離0.1%水楊酸甲酯10公尺距離內,受棉蚜危害小黃瓜植株上棉蚜數量顯著少於對照組,同時小黃瓜植株上束小瓢蟲的數量顯著多於對照組。此外0.1%水楊酸甲酯處理組小黃瓜果實產量與派滅淨處理組間無顯著差異。根據本試驗結果顯示於本試驗條件下施用0.1%水楊酸甲酯處理小黃瓜有潛力可取代殺蟲劑作為對棉蚜的防治方法。然而大面積的田間試驗有必要進行以確認施用水楊酸甲酯對防治小黃瓜棉蚜的有效性且相關保育生物防治措施的配合也需要在未來進一步研究。
The cotton aphid, Aphis gossypii (Glover), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphid rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional insecticide control methods. Methyl salicylate , a herbivore-induced plant volatile, has been shown to affect aphids’ behavior and attract the natural enemies of aphids for reducing their population. Therefore, methyl salicylate was first field-tested for the effectiveness of attracting natural enemies in Agricultural Research Institute. Then, this study evaluated the direct effects of methyl salicylate on cotton aphids’ settlement, reproduction, nymph developmental time, population development, and attractiveness to natural enemies. The efficiency of using methyl salicylate and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed that yellow sticky paper baited with methyl salicylate significantly attracted more Scymnus Pullus sodalis Weise, Scymnus Pullus quadrillum Motschulsky, brown lacewing, Orius strigicollis Poppius, Cardiastethus exiguus Poppius and Campylomma chinesis Schuh than control and the attractions were different followed by different concentrations. There were no difference in winged aphids’ settlement, reproduction, nymph developmental time and population development between the methyl salicylate treatment and control. Cucumber plants infested with cotton aphid and baited with 0.1% methyl salicylate contained significantly higher numbers of the natural enemy of cotton aphid, namely S. sodalis. Furthermore, methyl salicylate-treated cucumber plants contained a lower number of cotton aphid. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m distance of methyl salicylate application. In addition, fruit yield showed no difference between the methyl salicylate and pymetrozine treatments. According to our findings, under our tests condition, 0.1% methyl salicylate application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use.
文章公開時間: 2018-01-08
Appears in Collections:昆蟲學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.