Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95704
標題: 番茄生物炭混合介質對甘藍及番茄幼苗生長及對番茄萎凋病防治之影響
Effect of Tomato Biochar Mixed Substrates on Cabbage (Brassica oleracea L. var. capitata L.) and Tomato (Solanum lycopersicum) Seedling Growth and the Control of Tomato Fusarium Wilt
作者: 楊盈
Ying Yong
關鍵字: 番茄生物炭
育苗介質
病害防治
Tomato Biochar
Seedling Growth Subatrate
Disease Control
引用: 卜曉莉、薛建輝。2014。生物炭對土壤生境及植物生長影響的研究進展。生態環境學報 (3):535 - 540。 支中朝、王志武、陳青君。2003。不同輕型基質對加工番茄穴盤育苗的影響。新疆農業科學40 (6):360 - 361。 王萌萌、周啟星。2013。生物炭的土壤環境效應及其機制研究。環境化學32 (5) :768- 780。 司亞平、何偉明、陳殿奎。1993。番茄穴盤育苗營養面積選擇試驗初報。中國蔬菜 1:29 - 32。 司亞平、何偉明。1999。番茄穴盤育苗技術規範。農村實用工程技術 1:8-9。 朱茂山、關天舒、蔡大旺。2008。生防木黴菌T41菌株生物學特性研究。瀋陽農業大學學報。39(1):19 - 23。 池玉傑、伊洪偉、劉雷。2016。生防長枝木黴菌株T05生物學特性。東北林業大學學報44 (1):107 - 109。 何緒生、張樹清、佘雕、耿增超、高海英。2011。生物炭對土壤肥料的作用及未來研究。中國農學通報27 (15):16 - 25。 余誕年、吳定華、陳竹君。1997。番茄遺傳學。湖南科學技術出版社8 - 18。 吳耿東、楊凱成、胡博誠。2011。流體化床氣化技術。化工技術221:126 - 137。 吳雅芳、陳昇寬、鄭安秀。2016。設施栽培番茄病蟲害管理。設施疏果病蟲害管理暨安全生產研討會96 - 109。 李力、劉婭、陸宇超、梁中耀、張鵬、孫紅。2011。生物炭的環境效應及其應用的研究進展。環境化學30 (8):1411 - 1421。 李金文、顧凱、唐朝生、王宏勝、施斌。2018。生物炭對土體物理化學性質影響的研究進展。浙江大學學報(工學版) 52 (1):192 - 206。 李哖。1988。育苗介質與施肥園藝種苗產銷技術研討會專集。188 - 202。 李美娟。2004。生物炭的環境效應及其應用的研究進展。2004果菜健康管理研討會專集83-93。 李雪玲、劉慧、張天宇。2003。三株木黴生防菌的生物學特性研究。山東農業大學學報(自然科學版) 34 (1):5 - 8。 肖榮鳳。2007。瓜類尖孢鐮刀菌生理分化特性研究。福建農林大學研究所碩士論文。 武玉、徐剛、呂迎春、邵宏波。2014。生物炭對土壤理化性質影響的研究進展。地球科學進展29(1):6879。 柯仿鋼、黃思良、付崗。2010。西貢蕉枯萎病生防木黴菌株gz-2的鑒定及生物學特性研究。西南農業學報23 (5):1533 - 1539。 紀明山、李博強、許遠。2004。綠色木黴TR-8菌株的生物學特性研究。瀋陽農業大學學報35 (3):195 - 199。 郁宗雄。1988。瓜類育苗問題園藝種苗產銷技術研討會專集。176 - 178。 倪蕙芳、許淑麗、陳瑞祥、楊宏仁。2010。台灣地區土壤中木黴菌株對植物病原真菌拮抗能力之篩選。台灣農業研究 59: 29 - 41。 孫文章、謝桑煙。1998。甘藍穴盤育苗技術。台南區農業改良場技術專刊76: 87 - 4。 張千豐、王光華。2012。生物炭理化性質及對土壤改良效果的研究進展。土壤與作物 1 (4):219 - 226。 張玉博、莊文穎。2017。對峙培養條件下木黴拮抗植物病原真菌能力的評價。菌物學報36 (9):1251 - 1259。 張瑾、張樹武、徐秉良、古麗君、薛應鈺。2014。長枝木黴菌抑菌譜測定及其抑菌作用機理研究。中國生態農業學報22(6):661-667。 張簡秀容。1995。蔬菜穴盤育苗4部曲。豐年58 (18):44 - 47。 莊茗凱、李思儀、黃振文。2012。台灣甘藍黃葉病菌的鑑定及其對十字花科蔬菜的致病性。植物病理學會刊 21 (1):29 - 38。 連兆煌。1994。無土栽培技術與原理。中國農業出版社。 陳仁炫。2004。土壤與植體營養診斷技術。植物重要防疫檢疫病害診斷鑑定技術研習會專刊3:157 - 174。 陳可薇。2015。番茄莖葉資源化再利用於蔬菜栽培之研究。國立中興大學園藝系碩士論文。台中。67pp.。 陳任芳。2007。番茄萎凋病之預防策略。花蓮區農業專訊62:18 - 19。 陳俊位、鄧雅靜、蔡宜峯。2014。木黴菌在作物病害防治的開發與應用。農業生物資材產業發展研討會專刊87 - 115。 陳俊位。2010。木黴菌在農業上之應用。臺中區農業改良場特刊105:67 - 72。 陳勇、朱廷恆、汪琨、崔志峰。2012。提高木黴逆境適應性與生物防治效果的基因工程研究進展。中國生物工程雜誌32 (6):120 - 124。 陳溫福、張偉明、孟軍。2013。農用生物炭研究進展與前景。中國農業科學46(16) :3324-3333。 彭士永、朱建華。2000。無土栽培不同基質對番茄生理功能影響的研究。遼寧農業職業技術學院學報2 (4):16 - 17。 黃泮宮、張武男。1994。夏季蔬菜育苗之技術。海峽兩岸蔬菜耐熱與抗病栽培育種研討會(18):1 - 28。 黃振文、彭玉湘。2011。利用農業廢棄物研發抑病介質與有機添加物。節能減碳與作物病害管理研討會 127 - 136。 楊秀珠。2011。十字花科蔬菜病蟲害之發生與管理。合理、安全及有效使用農藥輔導教材。 楊軍、邵玉翠、仁順榮、賀宏達、高玉興。2011。不同基質配方對番茄冬季育苗的影響中國農學通報27 (04):223 - 226。 農業統計年報。2017。農業生產。 http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 廖芳心、陳榮輝、張粲如。1989。夏季高冷地蔬菜育苗、輪作與防雨栽培技術改進。蔬菜作物試驗研究彙報第六輯294 - 307。 劉士哲。2001。現代實用無土栽培技術。中國農業出版社。 劉志坤、葉黎佳。2007。生物質炭化材料製備及性能測試。生物質化學工程41 (5):29 - 32。 劉波、胡桂萍、肖榮鳳。2012。尖孢鐮刀菌寄主專化型脂肪酸生物標記鑒別特性。中國農業科學45 (24):4998 – 5012。 劉英德。1988。種子的萌發。種子生理五洲出版社臺北76 - 185。 劉新月、李凡、陳海如、郭俊、張萍。2008。致病性尖孢鐮刀菌生物防治研究進展。雲南大學學報(自然科學版) 30 (S1):89 - 93。 蔡佳儒、吳耿東。2016。臺灣農業廢棄物製備。生物炭之未來與展望24 - 28。 蔡瑜卿。2016。104年臺灣地區蔬菜育苗產業現況調查與分析種苗科技專訊95:31 - 35。 戴振洋、蔡宜峰、張隆仁、邱建中。2002。不同介質與育苗盤對紫錐花幼苗品質之影響。臺中區農業改良場研究彙報77:1 - 9。 戴振洋、蔡宜峰、郭孚燿。1996。肥料對不同品種甘藍穴盤苗生長之影響。臺中區農業改良場研究彙報50:11 - 20。 戴振洋、蔡宜峰。2012。有機番茄穴盤育苗技術。臺中區農業技術專刊 183:2 - 40。 薛佑光、宋妤、張武男。2003。介質對甘藍穴盤苗及其定植後初期生育之影響。植物種苗5(2):61-81。 薛佑光、李文汕、張武男。2000。介質對番茄台中亞蔬四號穴盤苗及其定植後初期生育之影響。興大園藝25 (2):59 - 72。 藍江林、肖榮鳳、劉波。2012。pH脅迫下尖孢鐮刀菌生長動力學模型。中國生態農業學報20 (11):1532 - 1538。 羅秋雄。2008。設施有機蔬菜生產技術。有機作物栽培技術研討會專刊47 - 60。 羅朝村、謝建元。2005。菌海戰術-有益木黴菌的應用。科學發展391:34 - 39。 羅朝村。1996。生物防治在作物病害管理上之應用與發展。植物保護新科技研討會專刊。臺灣省農業試驗所特刊57:141 - 150。 Aloni, B., T. Pashkar, L. Karni and J. Daie. 1991. Nitrogen supply influences carbohydrate partitioning of pepper seedlings and transplant development. J. Amer. Soc. Hort. Sci. 116 (6): 995 - 999. Asai, H., B. K. Samson, and H. M. Stephan. 2009. Biochar amendment techniques for upland rice production in Northern Laos. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 111: 81 - 84. Australian Standards International. 2003. Australian standard: Potting mixes. Australian Standards Interl. Ltd., Sydney, Australia. Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. phytopathol. 25: 67 - 85. Baker, K. F., and R. J. Cook. 1974. Biological control of plant pathogens. W. H. Freeman, San Francisco. Reprinted ed., 1982. Am. phytopathol. Soc., St. Paul, MN. 433pp. Bakker, P. A. H. M., J. G. Lamers, A. W. Bakker, J. D. Marrugg, P. J. Weisbeek, and B. Schippers. 1986. The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth. J. Pl. Path. 92: 249 - 256. Benitez T., A. M. Rincon, and M. C. Limon. 2004. Biocontrol mechanisms of Trichoderma strains. Intl. Microbiology, 7 (4): 249 - 260. Bruun, S., T. El-Zahery, and L. Jensen. 2009. Carbon sequestration with biochar – stability and effect on decomposition of soil organic matter. Climate Change: Global Risks, Challenges and Decisions. IOP Conf. Series: Earth and Environ. Sci. Chan, K. Y., L. van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. Austral. J. Soil Res. 45: 629 – 634. Cook, R.J., and K.F. Baker. 1983. The nature and practice of plant pathogens. Amer. phytopathol. 31: 53 – 80. Csizinszky, A. A. and D. J. Schuster. 1985. Response of cabbage to insecticide schedule plant spacing, and fertilizer rates. J. Amer. Soc. Hort. Sci. 110 (6): 888 - 893. Csizinszky, A. A. and D. J. Schuster. 1993. Impact of insecticide schedule, N and K rates, and transplant container size on cabbage yield. Hort. Sci. 28 (4): 299 - 304. Cunniff, P. 1995. Official methods of analysis of AOAC international (16th ed.). Aoac Intl. publisher. 1141pp. De Cal, A., R. García-Lepe, S. Pascual, and P. Melgarejo. 1999. Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato. Plant Pathol. 48: 260 - 266. Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar. London: Earthscan. Dreesen, D. R. and R. W. Langhans. 1992. Temperature effects on growth of impatiens plug seedlings in controlled environments. J. Am. Soc. Hort. Sci. 117: 209 - 215. Duku, M. H., S. Gu, and E. B. Hagan. 2011. Biochar production potential in Ghana: a review. Renewable and Sustainable Energy Rev. 15 (8): 3539 - 3551. Fontenol, W. C. and T. E. Billderback. 1993. Impact of hydrogel on physical properties of coarse- structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118: 217 - 222. Grossman, J. M, B. E. O''Neill, and S. M. Tsai. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecol. 60: 192 - 205. Harel, M. Y., Y. Elad, D. Rav-David, M. Borenstein, R. Shulchani, B. Lew, and E.R. Graber. 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil. 357: 245 – 257. Hockaday, W. C. 2006. The organic geochemistry of charcoal black carbon in the soils of the University of Michigan Biological Station. Ph. D. Dissertation. Columbus: Ohio State Univ. Horwitz, W. 1970. Association of official analytical chemist. Official methods of analysis, 12th Ed., Sec. 2. P. 204. Huang, C. H., P. D. Roberts, and L. E. Darnoff. 2012. Fusarium diseases of tomato. P.145 - 158. In: Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. Amer. phytopathol. soc. St. Paul, MN. 256pp. Huang, H. and L. Hong. 1988. Description and illustration in color of vegetables in Taiwan. Dept. Hort. Natl. Taiwan Univ. pg210. Huang, J. W. and S. K. Sun. 1982. Tomato wilt, Fusarium oxysporum(Schl. ) f. sp. lycopersici (Sacc.) Snyder & Hansan, in Taiwan. Plant Protection Bulletin 24: 265 - 270. IBI. 2012. Standardized product definition and product testing guidelines for biochar that is used in soil. New York: Intl. Biochar Initiative. Inbar, J., A. Menendez, and I. Chet. 1996. Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol. and Biochem. 28 (6): 757 - 763 Ishii, T. and K. Kadoya. 1994. Effects of charcoal as a soil conditioner on citrus growth and VA mycorrhizal development. J. Jpn. Soc. Hort. Sci. 63 (3): 529 - 535. Jeffery, S., F. G. A. Verheijen, and M. Velde. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosystems and Environ. 144: 175 - 187. Kasozi, G. N., A. R. Zimmerman, and P. Nkedi-Kizza. 2010. Catechol and humic acid sorption onto a range of laboratory produced black carbons (Biochars). Environ. Sci. and Technol. 44 (16): 6189 - 6195. Kawabe, M., Y. Kobayashi, Y., G. Okada, I. Yamaguchi, T. Teraoka, and T. Arie. 2005. Three evolutionary lineages of tomato wilt pathogen, Fusarium oxyporum f. sp. lycopersici, based on sequences of IGS, MATI, ang pg1, are each composed of isolates of a single mating type and a single or closed related vegetative compatibility group. J. General Plant Pathol. 71: 263 - 272. Ko, W. H. 1971. Biological control of seedling root rot of papaya caused by Phytophthora palmivora. phytopathol. 61: 780 - 782. Lehmann, J and S. Joseph. 2009. Biochar for environmental management, Sci. technol. London: Earthscan 1 - 29, 107 - 157. Lehmann, J. 2007. A handful of carbon. Nature. 447: 143 - 144. Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems - a review. Mitigation and Adaptation Strategies for Global Change. 11: 403 - 427. Lehmann, J., J. Pereira da Sliva, and C. Steiner. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of central Amazonia: fertilizer, and charcoal amendments. Plant and Soil. 249 (2): 343 - 357. Liang, B., J. Lehmann, and D. Solomon. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Amer. 70: 1719 - 1730. Liu, Y. X., M. Yang, and Y. M. Wu. 2011. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils and Sediments. 11(6): 930 - 939. Lo, C-T., E. B. Nelson, and G. E. Harman. 1994. Biological control of Pythium, Rhizoctonia, and Sclerotinia incited diseases of turfgrass with Trichoderma harzianum 1295 - 22. (Abstr.). Phytopathol. 84: 1372. López-Berges, M. S., J. Capilla, D. Turrà, L. Schafferer, S. Matthijs, C. Jöchl, P. Cornelis, J. Guarro, H. Haas, and A. D. Pietro. 2012. Hap X-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soil borne pathogen Fusarium oxysporum. Plant Cell. 24: 3805 - 3822. Major, J., M. Rondon, and D. Molina. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333 (1 - 2): 117 - 128. Malik, K. A. 1990. Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying. J. Microbiol. Methods. 12: 117 - 124. Matsubara, Y., N. Hasegawa, and H. Fukui. 2002. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J. Jpn. Soc. Hort. Sci. 71 (3): 370 - 374. Monte E. 2010. Understanding Trichoderma: between biotechnology and microbial ecology. Intl. Microbiology. 4 (1): 1 - 4。 Noguera, D., Rondón, and K. R. Laossi. 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 42 (7): 1017 - 1027. Novak, J. M., J. R. Frederick, and P. J. Bauer. 2009. Rebuilding organic carbon contents in coastal plain soils using conservation tillage systems. Soil Sci. Soc. Amer. J. 73 (2): 622 - 629. Ogawa, M. 1994. Symbiosis of people and nature in the tropics. Farming Japan. 28 (5): 10 - 34. O''neill, B., J. Grossman, and M.T. Tsai. 2009. Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecol. 58: 23 - 35. Pietikäinen, J., O. Kiikkilä, and H. Fritze. 2000. Charcoal as a habitat for microbes and its effects on the microbial community of the underlying humus. Oikos. 89: 231 - 242. Rajkovich, S., A. Enders, and K. Hanley. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertility of Soils. 48 (3): 271 – 284. Samuel, J., Dunlop, M. C. Arbestain., P. A. Bishop, and J. J. Wargent. 2015. Closing the loop: use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. Hort. Sci. 50 (10): 1572 - 1581. Schimel, J., T. C. Balser, and M. Wallenstein. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecol. 88: 1386 - 1394. Schmidt, M. W. I. and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles. 14: 777-794. Schuster, A. and S. Monika. 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87 (3): 787 - 799. Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 48: 516 - 525. Srivastava, R., A. Khalid, U. S. Singh and A. K. Sharma. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control. 53: 24 - 31. Sun, S. and Z. Huang. 1996. Plant Fusarium Diseases in Taiwan. Shih Wei. Taichung, Taiwan. 170pp. (in Chinese) Thies, J. E. and M. Rillig. 2009. Characteristics of biochar: biological properties. Lehmann, J. and S. Joseph. Biochar for environmental management: Sci. technol. London, Earthscan.85 - 105. Wang, T., M. Camps-Arbestain, M. Hedley, and P. Bishop. 2012. Predicting phosphorus bioavail-ability from high-ash biochars. Plant Soil 357: 173 – 187. Warnock, D. D., Lehmann, J., Kuype T. W. and Rilling, M. C. 2007. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300: 9 - 20. Warnock, D. D. 2009. Arbuscular mycorrhizal responses to biohcar in soils-potential mechanisms of interacition and observed respones in controlled environments. Missoula: The Univ. Montana. Xu, G., Y. Lü, and J. Sun. 2012. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean-Soil, Air, Water. 40 (10): 1093 - 1098. Yeager, T., C. Gilliam, T. E. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices, guide for producing container- grown plants. Southern Nursery Association, Atlanta, Georgia. Yoshizawa, S. and S. Tanaka. 2008. Acceleration of composting of food garbage and livestock waste by addition of biomass charcoal powder. Asian Environ. Res. 1: 45 - 50. Zhang, R.H., Z. Q. Duan, and Z. G. Li. 2012. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 22: 333 - 342. Zwieten, L. V., S. Kimber, and S. Morris. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 327: 235 -246.
摘要: 生物炭(biochar)為生物質於無氧或低氧環境下經熱裂解後形成之炭化產物,其原材料主要以農業廢棄物,如稻稈、花生殼等為主。生物炭之物化特性包含具多孔性、高電導度及偏鹼等特性。本研究利用採收後之番茄植株以350 ℃燒製成生物炭,探討番茄生物炭之物化特性,並將其與泥炭土混合作為育苗介質,進行甘藍與番茄之育苗與抗病性試驗。 番茄生物炭之物理性質分析結果顯示,其總孔隙度、容器含水量與總體密度介於理想之範圍,空氣孔隙率則較低。另一方面,其化學性質則偏鹼,導電度偏高;因此在其與泥炭土混合之前乃先進行二次淋洗,以降低電導度並使酸鹼值趨向中性。營養元素分析顯示,TBW2-25與TBW2-50之氮濃度較高,其餘介質之氮濃度皆介於理想範圍內;各供試介質之磷、鉀、鈣、鎂、鐵、錳、鋅及銅之濃度則皆落於理想範圍內。 種子之發芽試驗顯示,甘藍與番茄種子於泥炭土及番茄生物炭混合介質濾液中之發芽率皆達90 %以上,顯示番茄生物炭混合介質對於甘藍與番茄而言並無生長抑制物質,可作為育苗之用。甘藍育苗試驗中,各供試介質所培育幼苗之壯苗指數彼此間並無顯著差異,然生育性狀以TBW2-25育苗時為最佳,因此甘藍育苗時番茄生物炭替代泥炭土之最佳替代比例為25 %。番茄育苗則是以TBW2-50培育之幼苗最佳,因此番茄育苗時的最佳替代比例為50%。 木黴菌 (Ti6、TN3、TrL-01) 與番茄萎凋病菌 (Fol 11A race1、Fol 146 race2) 之對峙試驗結果顯示,TrL-01對番茄萎凋病菌菌絲生長之抑制率可達63 %以上;其餘兩株木黴菌之抑制率則介於20-50 %之間。 泥炭土接種試驗結果顯示,對照組(P)與單獨接種木黴菌處理組(PT)之番茄幼苗生長性狀相似,但壯苗指數以PT較佳;單獨接種番茄萎凋病菌處理組(PF)生育最差,但稍不如同時接種番茄萎凋病菌與木黴菌處理組(PFT),此結果顯示木黴菌TrL-01與泥炭土中能促進幼苗生長但對番茄萎凋病菌之抑病效果有限。 添加50%番茄生物炭之混合介質(TBW2-50)之接種試驗結果顯示,單獨接種木黴菌處理組(TBW2-50T)之番茄幼苗部分生長性狀較對照組(TBW2-50)佳;單獨接種番茄萎凋病菌處理組(TBW2-50F)之植株生長性狀則僅次於TBW2-50與TBW2-50T;同時接種木黴菌與番茄萎凋病菌之處理(TBW2-50FT)則整體最矮小。此結果顯示木黴菌與番茄生物炭混合介質中或可促進番茄幼苗生長但對萎凋病菌則不具抑制效果。 總而言之,經淋洗之番茄生物炭可部分取代泥炭土作為甘藍與番茄之育苗介質,添加木黴菌後亦有促進植物生長之作用,但對於番茄萎凋病菌之防治能力則不顯著。因此,番茄生物炭應用於蔬菜育苗可以替代部分泥炭土,減少泥炭土的用量,並有助於農廢棄物之再利用。
Biochar is a carbonized product made from pyrolysis. The raw materials of biochar are mainly agricultural wastes including rice straw and peanut shells. The physical and chemical properties of biochar are characterized by high porosity, electrical conductivity and pH value. In this study, tomato residues were pyrolyzed at 350 oC to produce tomato biochar, the chemical and physical properties of tomato biochar were analyzed, and the suitability of tomato biochar mixed with peat moss as transplant growth substrate or disease-resistant substrate was investigated. Results from physical analysis of tomato biochar indicated that the values of its total porosity, container capacity and bulk density are within the range for an ideal growth substrate, however, the value of its air space is lower than the ideal range. On the other hand, the chemical analysis of tomato biochar revealed that its pH value and electrical conductivity are too high to be a suitable growth substrate. Therefore, tomato biochar was washed twice to lower its pH value and electrical conductivity before being mixed with peat moss. Nutrient analysis of tomato biochar-mixed substrates suggested that N concentration is higher than its ideal range in TBW2-25 and TBW2-50 but are suitable in the rest substrates tested. The concentrations of P, K, Ca, Mg, Fe, Mn, Zn and Cu were all suitable in all substrates tested. Seed germination tests revealed that the germination rates of cabbage and tomato seeds were both over 90 % when exposed to the filtrates of tomato biochar-mixed substrates. These results suggested that there is no growth inhibiting substance present in the tomato biochar-mixed substrates and these substrates can be used for transplant growth. Results from cabbage seedling growth test demonstrated that there is no significant difference of seedling quality index among all substrates tested but the phenotype of cabbage seedling appears to be the best when grown in TBW2-25 suggesting that tomato biochar can replace 25 % peat moss for cabbage transplant growth. Results from tomato seedling growth test indicated that seedlings perform better when grown in TBW2-50 suggesting that tomato biochar can replace 50% peat moss for cabbage transplant growth. Dual cultures on potato dextrose agar(PDA) demonstrated that inhibition rate of Fusarium oxysporum f. sp. lycopersici mycelial growth by Trichoderma longibrachiatum TrL-01 is more than 63 % and between 20-50 % by T. harzianum Ti6 and TN3, respectively. Inoculation tests in peat moss suggested that phenotypes of tomato seedlings are similar between those grown in peat moss (P) and in peat moss plus T. longibrachiatum TrL-01 (PT), however, the seedling quality index is better in PT. Seedling growth was the worst for those grown in peat moss plus F. oxysporum f. sp. lycopersici (PF) but was only slightly worse than those grown in peat moss plus F. oxysporum f. sp. lycopersici and T. longibrachiatum TrL-01 (PFT). Taken together, these results revealed that the seedling growth promoting effect and Fusarium mycelial growth inhibition effect of T. longibrachiatum TrL-01 is somewhat limited. Inoculation tests in the tomato biochar-mixed substrate (TBW2-50) indicated that growth phenotypes of tomato seedlings are better in those grown in TBW2-50 plus T. longibrachiatum TrL-01 (TBW2-50T) than those grown in TBW2-50. Growth phenotypes of tomato seedlings grown in TBW2-50 plus F. oxysporum f. sp. lycopersici (TBW2-50F) were slightly worse than those grown in TBW2-50 or TBW2-50T. Growth phenotypes of tomato seedlings grown in TBW2-50 plus F. oxysporum f. sp. lycopersici and T. longibrachiatum TrL-01 were the worst. Overall, these results revealed that inoculation of T. longibrachiatum TrL-01 in TBW2-50 may promote tomato seedling growth, however, no suppression of F. oxysporum f. sp. lycopersici function can be found. Taken together, tomato biochar after being washed twice may partially replace peat moss as a growth substrate for tomato and cabbage transplant growth, seedling growth promoting effect may be observe in the tomato biochar-mixed substrate (TBW2-50) after inoculation with T. longibrachiatum TrL-01, however, suppression of F. oxysporum f. sp. lycopersici function by T. longibrachiatum TrL-01 was not obvious. The application of tomato biochar as a growth substrate for vegetable transplant production may reduce the amount of peat moss consumption and contribute to agricultural waste reutilization.
URI: http://hdl.handle.net/11455/95704
文章公開時間: 2018-07-07
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.