請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95711
標題: 蝴蝶蘭物種種子及其發芽之形態與商業品種雜交子代選拔
The morphology of seed and In vitro germination of Phalaenopsis species and progeny selection of commercial hybrids
作者: 李竹
Zhu Lee
關鍵字: 種子性狀
發芽生長指數
全互交
性狀調查
seed trait
germination growth index
reciprocal cross
traits survey
引用: 1. 中華民國財政部關務署。統計資料庫查詢系統。貨物、數量、價值、國家(地區)查詢。< https://portal.sw.nat.gov.tw/APGA/GA03> 2. 朱建鏞。2016。以商業模式的觀點談蝴蝶蘭育種。蝴蝶蘭育種與品種管理策略研討會專刊。P. 95-99。 3. 米田和夫、林瑞松、陳本源。2007。蝴蝶蘭(蔡金川、蔡謂停 譯)。國立中興大學農業暨自然資源學院。農業推廣中心。臺中。臺灣。 4. 吳容儀、曹進義、莊耿彰、謝廷芳、蔡奇助、葉育哲、楊颺、胡維昭、宋品慧、賴彥旭。2016利用異屬雜交技術開發蝴蝶蘭新性狀。蝴蝶蘭育種與品種管理策略研討會專刊 p. 41-56。 5. 邱翊恬。2011。扇型文心蘭試管內開花授粉及劍葉文心蘭屬間雜交之研究。國立中興大學園藝學系碩士論文。臺中。 6. 俞繼英、張陽、鄭錦凱、王春,徐宏磊。2010。蝴蝶蘭黃花系品種Phalaenopsis Taipei Gold和P. Sara Gold雜交及其後代的遺傳表現。浙江農林大學學報 27:550-553。 7. 高典林。2006。作物雜交育種,p. 69-81。刊於:高典林。現代作物育種學。藝軒圖書出版社。台北。 8. 徐善德、沈再木、邱永正、黃光亮、沈榮壽、莊畫婷、古森本、陳福旗、金石文、陳光堯、朱建鏞、蔡媦婷。2010。臺灣蝴蝶蘭產業優勢技術之開發。花卉研究團隊研究現況與展望研討會專刊 p. 1-9。 9. 黃敏展。2002。亞熱帶花卉學總論。國立中興大學園藝系。臺中。臺灣。 10. 黃禎宏、劉黃崇德、陳澄鐘、劉黃碧圓、鄭耕明、賴清義、黃文榮、蕭元川、孫銘鴻、黃玉山、廖惠如。2014。蝴蝶蘭類。p. 203-268。刊於:黃禎宏。蘭花淺介II。社團法人台灣蘭花產銷發展協會。臺南。 11. 莊畫婷、徐善德、沈再木。2008。黃花蝴蝶蘭育種障礙之表現。臺灣園藝 54:59-66。 12. 陳文輝、高佑靈、鄧澄欣. 2014. 應用DAPI螢光染劑及流式細胞術評估蝴蝶蘭原生種基因組之差異。台灣園藝 60:115-123。 13. 郭華仁。2015。胚與貯藏組織的發育,p. 57-61。刊於:郭華仁著。種子學。國立台灣大學。臺北。臺灣。 14. 郭慧蘭、柯見螢、陳逸詩、金石文、陳褔旗。2005。蝴蝶蘭種原根尖染色體染色技術之探討。中國園藝 51:339-346。 15. 葉志新、廖芳心、鄭隨和。2011。蝴蝶蘭品種染色體數及型態分析。桃園區農業改良場研究彙報 69:47-58。 16. 葉志新、李淑真、廖芳心、葉育哲、蔡月夏、蔡媦婷。2012。蝴蝶蘭之雜交育種。2011年花卉研究團隊-成果發表會專刊 p. 25-34。 17. 鄭淑芬。2012。台灣原生蘭科植物內生真菌之分布與其應用。 國立臺灣大學園藝暨景觀學系博士論文。臺北。 18. 蔡淑華。1975。植物組織切片技術綱要。茂昌圖書有限公司。臺北。臺灣。 19. 蔡奇助、莊畫婷。2009。遠緣雜交與分子遺傳鑑定技術在蝴蝶蘭育種之應用潛力。植物種苗 17:37-45。 20. Arditti, J. and A. K. A. Ghani. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytol. 145: 367-421. 21. Arditti, J., J. D. Michaud, and P. L. Healey. 1979. Morphometry of orchid seeds. I. Paphiopedilum and native California and related species of Cypripedium. Amer. J. Bot. 66: 1128-1137. 22. Arditti, J., J. D. Michaud, and P. L. Healey. 1980. Morphometry of orchid seeds. II. Native California and related species of Calypso, Cephalanthera, Corallorhiza and Epipactis. Amer. J. Bot. 67: 347-360. 23. Beer, J. G. 1863. Beiträge zur morphologie und biologie der familie der Orchideen. Druck und Verlag von Carl Gerold''s Sohn, Wien. 24. Brewbaker, J. L. and B. H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50: 859-865. 25. Barthlott, W., B. G. Veldmann, and N. Korotkova. 2014. Orchid seed diversity: A scanning electron microscopy survey. Botanic Garden and Botanical Museum Berlin-Dahlem, Berlin. 26. Cribb, P. and R. Govaerts. 2005. Just how many orchids are there? Proc. 18th WOC. p. 161-172. 27. Cristenson, E. A. 2001. Phalaenopsis: a monograph. Timber Press, Portland, Oregon, U.S.A. 28. Chen, J. C. and S. C. Fang. 2016. The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod. 29: 179-188. 29. Chaudhary, B., P. Chattopadhyay, and N. Banerjee. 2014. Modulations in seed micromorphology reveal signature of adaptive species-diversification in Dendrobium (Orchidaceae). Open J. Eco. 4: 33-42. 30. Chen, W. H., Y. L. Kao, C.Y. Tang, C. C. Tsai, and T. Y. Lin. 2013. Estimating nuclear DNA content within 50 species of the genus Phalaenopsis Blume (Orchidaceae). Sci. Hortic. 161: 70-75. 31. Chen, W. H., C. Y. Hsu, H. Y. Cheng, H. Chang, H. H. Chen, and M. J. Ger. 2011. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep. 30: 1007-1017. 32. Dressler, R. L. 1993. Phylogeny and classification of the orchid family. Cambriddge University Press, Cambridge. 33. Doležel, J. and J. BartoŠ. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99-110. 34. Doležel, J., J. Greilhuber, and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244. 35. Frowine, S. A. 2008. Moth Orchid. Timber Press, Portland, Oregon, U.S.A. 36. Grlesbach, R. J. 1984. Effects of carotenoid-anthocyanin combinations on flower color. J. Hered. 75: 145-147. 37. Griesbach R. J. 2002. Development of Phalaenopsis orchids for the mass-market. p. 458-465. In: J. Janick and A. Whipkey (eds.), Trends in New Crops and New Uses. ASHS Press, Alexandria, VA. 38. Güler N. 2016. Seed micromorphology of Orchis Tourn. ex L. (Orchidaceae) and allied genera growing in Edirne province, Turkey. PhytoKeys 68: 9-25. 39. Gottlieb, L. D., and V. S. Ford. 1988. Genetic studies of the pattern of floral pigmentation in Clarkia gracilis. Heredity 60: 237-246. 40. Givnish, T. J., D. Spalink, M. Ames, S. P. Lyon, S. J. Hunter, A. Zuluaga, W. J. D. Iles, M. A. Clements, M. T. K. Arroyo, J. L. Mack, L. Endara, R. Kriebel, K. M. Neubig, W. M. Whitten, N. H. Williams, and K. M. Cameron. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B 282: 20151553. http://dx.doi.org/10.1098/rspb.2015.1553. 41. Galloa, F. R., L. A. Souzaa, M. A. M. Gutierrea, O. J.G. Almeida. 2016. Seed structure and in vitro seedling development of certain Laeliinae species (Orchidaceae). Rev. Mex. Biodivers. 87: 68-73. 42. Holttum, R. E. 1965. Cultivated species of the orchid-genus Doritis Lindl. Kew Bull. 19: 207-212. 43. Healey, P. L., J. D. Michaud, and J. Arditti. 1980. Morphometry of Orchid Seeds. III. Native Claifornia and Related Species of Goodyera, Piperia, Platanthera and Spiranthes. 1980. Amer. J. Bot. 67: 508-518. 44. Hagemann, R. and M. B. Schröder. 1989. The cytological basis of the plastid inheritance in angiosperms. Protoplasma. 152: 57-64. 45. Hsu, S. T., H. T. Chuang, and T. M. Shen. 2010. Breeding barriers in red Phalaenopsis orchids. Acta Hort. 878: 145-152. 46. Hsieh, M. H., H. C. Lu, Z. J. Pan, H. H. Yeh, S. S. Wang, W. H. Chen, H. H. Chen. 2013. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci. 201-202: 25-41. 47. Hoang, N. H., M. E. Kane, E. N. Radcliffe, L. W. Zettler, and L. W. Richardson. 2017. Comparative seed germination and seedling development of the ghost orchid, Dendrophylax lindenii (Orchidaceae), and molecular identification of its mycorrhizal fungus from South Florida. Ann. Bot. 119: 379-393. 48. Hsu, C.C., Y.Y. Chen, W.C. Tsai, W.H. Chen, and H.H. Chen. 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiol. 168: 175-191. 49. Johnson, T. R. and M. E. Kane. 2007. Asymbiotic germination of ornamental Vanda: in vitro germination and development of three hybrids. Plant Cell Tiss. Organ. Cult. 91: 251-261. 50. Jung, M. J., T. C. Hsu, C. S. Leou, and C. L. Yeh. 2010. Notes on Phalaenopsis (Orchidaceae) of Hsiaolanyu, Taiwan. Taiwania 55: 407-411. 51. Knudson, L. 1922. Non-symbiotic germination of orchid seed. Bot. Gaz. 73: 1-25. 52. Kishor, R., P. S. S. V. Khan, G.J. Sharmaa. 2006. Hybridization and in vitro culture of an orchid hybrid Ascocenda‘Kangla’. Sci. Hort. 108: 66-73. 53. Kim, M. S., Y. R. Lee, H. K. Rhee, S. K. Park, H. K. Shin, H. Y. Jung, and J. H. Lim. 2011. A new hybrid, dark pink spotted type Phalaenopsis ‘Pink Marble’. Kor. J. Hort. Sci. Technol. 29: 503-506. 54. Knudson, L. 1922. Non-symbiotic germination of orchid seed. Bot. Gaz. 73: 1-25. 55. Lee, Y. I., C. F. Lu, and M. C. Chung. 2007. Developmental changes in endogenous abscisic acid concentrations and asymbiotic seed germination of a terrestrial orchid, Calanthe tricarinata Lindl. J. Amer. Soc. Hort. Sci. 132: 246-252. 56. Lee, Y. I., E. C. Yeung, N. Lee, and M. C. Chung. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. Bot. Stud. 49: 139-146. 57. Lee, H., D. Chiou, W. Chen, A. H. Markhart, Y. Chen, and T. Lin. 2004. Dynamics of cell growth and endoreduplication during orchid flower development. Plant Sci. 166: 659-667. 58. Lin, S., H. C. Lee, W. H. Chen, C. C. Chen, Y. Y. Kao, Y. M. Fu, Y. H. Chen, and T. Y. Lin. 2001. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. J. Amer. Soc. Hort. Sci. 126: 195-199. 59. Masaaki, C. 2002. Phalaenopsis species. Chiba Masaaki Publishing Society, Saitama-ken, Japan. 60. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497. 61. Ma, H., M. Pooler, and R. Griesbach. 2009. Anthocyanin regulatory/structural gene expression in Phalaenopsis. J. Amer. Soc. Hort. Sci. 134: 88-96. 62. Mudalige, R. G., A. R. Kuehnle, and T. D. Amore. 2003. Pigment distribution and epidermal cell shape in Dendrobium species and hybrids. Hortscience 38: 573-577. 63. Mweetwa, A. M., G. E. Welbaum, and D. Tay. 2008. Effects of development, temperature, and calcium hypochlorite treatment on in vitro germinability of Phalaenopsis seeds. Sci. Hortic. 117: 257-262. 64. Martins, T. R., J. J. Berg, S. Blinka, M. D. Rausher, and D. A. Baum. 2013. Precise spatio-temporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in Clarkia gracilis (Onagraceae). New Phytol. 197: 958-969. 65. Nishimura, G. 1981. Comparative morphology of Cattleya and Phalaenopsis (Orchidaceae) seedlings. Bot. Gaz. 142: 360-365. 66. Ohmiya, A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci. Hortic. 163: 10-19. 67. Ogawa, D., K. Ishikawa, and M. Mii. 2012. Difference in the polysomaty degree during fruit development among plants with different ploidy levels produced by artificial chromosome doubling of a pepper (Capsicum annum) cultivar ‘Shishitou No. 562’. Sci. Hortic. 134: 121-126. 68. Petroni, K. and C. Tonelli. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 181: 219-229. 69. Pereira, M. C., D. I. Rocha, T. G. R. Veloso, O. L. Pereira, D. M. T. Francino, R. M. S. A. Meira, and M. C. M. Kasuya. 2015. Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae) promoted by mycorrhizal fungi Epulorhiza spp. Acta Bot. Brasilica 29: 567-574. 70. Roy J., N. Banerjee. 2002. Optimization of in vitro seed germination, protocorm growth and seedling proliferation of Vanda tessellata (Roxb.) Hook Ex G Don. Phytochemistry 52: 167-178. 71. Sweet, H. R. 1980. The Genus Phalaenopsis. Day printing Crop., Pomona, California, USA. 72. Su, H.J. 2000. Orchidaceae. In: Flora of Taiwan 2nd ed. Vil. 5. Huang, T. C. (eds.). Flora of Taiwan. Department of Botany, National Taiwan University. Taipei. 833 pp. 73. Stewart, J. and M. Griffiths. 1995. Manual of orchids. Timber Press, Portland, Oregon, U.S.A. 74. Swamy, K. K., H. N. Krishna Kumar, T. M. Ramakrishna, and S. N. Ramaswamy. 2004. Studies on seed morphometry of epiphytic orchids from western ghats of karnataka. Taiwania 49: 124-140. 75. Shang, Y., J. Venail, S. Mackay, P.C. Bailey, K.E. Schwinn, P.E. Jameson, C.R. Martin, and K.M. Davies . 2011. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol. 189: 602-615. 76. Tang, C. Y. and W. H. Chen. 2007. Breeding and development of new varieties in Phalaenopsis. In: W. H. Chen and H. H. Chen(eds). Orchid biotechnology. World Scientific. Singapore. 77. Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733-749. 78. Tsutsumi, C., T. Yukawa, N. S. Lee, C. S. Lee, and M. Kato. 2007. Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan. J. Plant Res. 120: 405–412. 79. Tatsuzawa, F., N. Saito, H. Seki, R. Hara, M. Yokoi, and T. Honda. 1997. Acylated cyanidin glycosides in the red-purple flowers of Phalaenopsis. Phytochemistry 45: 173-177. 80. Udomdee, W., P. J. Wen, C. Y. Lee, S. W. Chin, and F. C. Chen. 2014. Effect of sucrose concentration and seed maturity on in vitro germination of Dendrobium nobile hybrids. Plant Growth Regul. 72: 249-255. 81. Villegas, P. B., S. W. Chin, and F. C. Chen. 2008. Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J. Amer. Soc. Hort. Sci. 133: 107-116. 82. Vo, T. C., J. H. Mun, H. J. Yu, Y. J. Hwang, M. Y. Chung, C. K. Kim, H. Y. Kim, and K. B. Lim. 2015. Phenotypic analysis of parents and their reciprocal F1 hybrids in Phalaenopsis. Hortic. Environ. Biotechnol. 56: 612-617. 83. Yukawa, T., K. Kita, T. Honda, T. Hidayat, and M. Ito. 2005. Molecular phylogenetics of Phalaenopsis (Orchidaceae) and allied genera: re-evaluation of generic concepts. Acta Phytotax. Geobot. 56: 141-161. 84. Yang, Y., J. Wang, Z. Ma, G. Sun, and C. Zhang. 2014. De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentiation. Acta Soc. Bot. Pol. 83: 191-199. 85. Yuan, S. C., S.W. Chin, and F.C. Chen. 2015. Current trends of Phalaenopsis orchid breeding and study on pollen storage. Plant Reprod. 29: 179-188. 86. Zhao, D. and J. Tao. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 6: 1-13. 87. Zhou, Z., and J. Y. Gao. 2016. Highly compatible Epa-01 strain promotes seed germination and protocorm development of Papilionanthe teres (Orchidaceae). Plant Cell Tiss. Organ Cult. 125: 479-493. 88. Zhang Y., Y. I. Lee, L. Denga, and S. Zhao. 2013. Asymbiotic germination of immature seeds and the seedling development of Cypripedium macranthos Sw., an endangered lady’s slipper orchid. Sci. Hortic. 164: 130-136. 89. Zhang, F. P., J. J. Zhang, N. Yan, H. Hu, and S. B. Zhang. 2015a. Variations in seed micromorphology of Paphiopedilum and Cypripedium (Cypripedioideae, Orchidaceae). Seed Sci. Res. 25: 395-401. 90. Zhang,Y. Y., K. L. Wu, J. X. Zhang, R. F. Deng, J. Duan, J. A. T. Silva, W. C. Huang, S. J. Zeng. 2015b. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu. Sci. Rep. 5, 16356; doi:10.1038/srep16356.
摘要: 蝴蝶蘭產業蓬勃發展,並有相當之栽培研究,但該屬物種的種子形態以及種子發芽的相關基礎資訊卻十分稀少,本研究第一部份對蝴蝶蘭屬中10個物種及2個亞種的種子性狀與8個物種及2個亞種的無菌播種進行調查,配合種子發芽生長指數,觀察種子的外觀性狀以及發芽後之表現。多數物種的種子呈橢圓形至長橢圓形,僅朵麗蘭P. pulcherrima與姬蝴蝶蘭P. equestris種子呈紡錘狀,其中鹿角蝴蝶蘭P. cornu-cervi種子體積最大,姬蝴蝶蘭P. equestris體積最小。無菌播種後以蝴蝶蘭亞屬中的物種發芽速度較快,對使用之培養基反應良好,派利西亞屬中派利西蝴蝶蘭P. parishii剛播種時發芽指數較低,播種八周後發芽指數提高,多唇亞屬之物種發芽速率最慢,推測不同亞屬之物種對培養基可能有偏好。 新品種的推出可以提供市場新的選擇,更新舊有品種,本研究第二部份利用四個商業品種進行全互交、測定基因組大小、檢測花粉活力。全互交後的子代初步調查植株與花朵之特性,觀察後代性狀表現趨勢、親本對性狀造成之影響。也依據子代之表現從中選出外表優秀且葉片短、葉長寬比小之單株。親本之花粉檢測後皆可發芽,基因組大小介於4.24-4.59 pg,互交後著果率良好,成熟之種子有胚率皆達50%以上,最後共280株子代開花。同一母本下,以興農阿嬤為父本之子代植株葉長寬比較小,V31為父本下觀察到花朵器官較大。最後於所有雜交後代中選出3株單株,其葉片性狀符合本試驗需求。
Phalaenopsis industry has been well developmented and many studies focus on the cultivation. But, the basic research of seed traits and germination performance of Phalaenopsis species is still few. The first chapter of this study observe the seed traits of 10 species and 2 subspecies, germination performance of 8 species and 2 subspecies in three Phalaenopsis subgenera with the seed germination growth index. The seeds of the most species are oval to long oval. Only the seeds of P. pulcherrima and P. equestris are spindle-shaped. The seeds volume of P. cornu-cervi is largest. On the contrary, the seeds volume of P. equestris is smallest. The germination rate of the species in subgenus Phalaenopsis is fast than the other subgenera. P. parishii, in the subgenus Parishianea has the lowest germination rate at the week 4. After week 8, the germination growth index became higer. The phenomenon indicate that species in different subgenera may have different preference to the culture medium. Realease new cultivar can provide more options for the market and to renovate the old cultivar. In the second chapter of this study, four commercial cultivars are used to reciprocal cross, examing the genome size and testing the pollen vaitalty. To observe the performance of hybrids, they were investigated the characteristics of plant and flower. In additional, we select the individual that leaf short and aspect ratio low with appearance well. All the pollen of used parents can germinate in culture medium. The genome size is between 4.24-4.59 pg. After pollinated, the situation of fruit set is great and all the cross has 50% embryo rate at least. There are 280 hybrids bloom totally. At the situation of same seed parent, as Xing-nong A-ma be the pollen parent, the length of plant, flower stalk and leave length/width ratio of offsprings is low. As the V31 be the pollen parent, the flower size of offsprings is bigger than the other. Finally, we selected three individual that leaf trait corresponse to our require.
URI: http://hdl.handle.net/11455/95711
文章公開時間: 2017-08-01
顯示於類別:園藝學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104032101-1.pdf4.35 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。