請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95714
標題: 轉榖氨醯胺酵素(Transglutaminase)基因轉殖至水稻葉綠體之研究
Studies on Transferring Transglutaminase Gene into Rice Chloroplast
作者: 紀科衡
Ke-Heng Chi
關鍵字: 榖氨醯胺酵素
selectable marker gene
callus regeneration
引用: 朱宛茹、楊明德、曾夢蛟。2010。D型胺基酸氧化酵素基因(daao)作為甘藍之葉綠體基因轉殖的篩選標誌基因之研究。興大園藝 35(4): 43-60。 行政院農業委員會農糧署。2015。台灣糧食統計要覽 - 貳、稻米生產。台北:行政院農業委員會農糧署。 施惠蓉。2006。轉殖轉穀氨醯胺酵素基因至大豆之研究。國立中興大學園藝學系碩士論文。 陳楷婷。2015。在大腸桿菌胞外表現Streptomyces轉麩氨醯胺酶之探討。國立中興大學分子生物學研究所碩士論文。 傅承泰。2012。無篩選標誌基因之轉殖水稻葉綠體生產轉穀氨醯胺酵素之研究。國立中興大學園藝學系碩士論文。 詹弘祥。2002。在大腸菌生產重組Streptomyces轉麩氨醯胺酶及重組酵素 pro-peptide 功能之探討。國立中興大學分子生物研究所碩士論文。 Aalami, M., and K. Leelavathi. 2008. Effect of microbial transglutaminase on spaghetti quality. J. Food Sci. 73(5):306-312. Abdel-Banat, B. M. A., S. Nonklang, H. Hoshida, and R. Akada. 2010. Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27: 29–39. Abiri, R., M. Maziah, N. A. Shaharuddin, Z. N. B. Yusof, N. Atabaki, M. M. Hanafi, M. Sahebi, P. Azizi, N. Kalhori, and A. Valdiani. 2017. Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. Int. J. Environ. Sci. Technol. 14:1091–1108. Agarwal, P., M. Dabi, P. More, K. Patel, K. Jana, and P. K. Agarwal. 2016. Improved shoot regeneration, salinity tolerance and reduced fungal susceptibility in transgenic tobacco constitutively expressing PR-10a gene. Front. Plant Sci. doi: 10.3389/fpls.2016.00217. Agrawal, V., and P. R. Sardar. 2007. In vitro regeneration through somatic embryogenesis and organogenesis using cotyledons of Cassia angustifolia Vahl. In Vitro Cell. Dev. Biol.-Plant. 43:585–592. Ahmad, N., F. Michoux, J. McCarthy, and P. J. Nixon. 2012. Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts. Planta 235:863–871. Ajijah, N., R. S. Hartati, Rubiyo, D. Sukma, and Sudarsono. 2015. Effective cacao somatic embryo regeneration on kinetin supplemented DKW medium and somaclonal variation assessment using SSRS markers. AGRIVITA. 38(1):80-92. Amaranatha Reddy, V., R. S. Vemanna, B. H. Rajashekar Reddy, K. C. Babitha, K. Kiranmai, A. Nareshkumar, and C. Sudhakar. 2015. An efficient callus induction and regeneration protocol for a drought tolerant rice Indica genotype AC39020. J. Plant Sci. 3(5): 248-254. Ando, H., M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, and M. Motoki. 1989. Purification and characteristics of a novel transglutaminase derived from microorganism. Agric. Biol. Chem. 53:2613–17. Atta, R., L. Laurens, E. Boucheron-Dubuisson, A. Guivarc’h, E. Carnero, V. Giraudat-Pautot, P. Rech, and D. Chriqui. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57:626–644. Autio, K., K. Kruus, A. Knaapila, N. Gerber, L. Flander, and J. Buchert. 2005. Kinetics of transglutaminase-induced cross-linking of wheat proteins in dough. J. Agric. Food Chem. 53:1039–1045. Balestrazzi, A., M. Confalonieri, A. Macovei, M. Donà, and D. Carbonera. 2011. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep. 30:287–295. Bartels, D., K. Engelhardt, R. Roncarati, K. Schneider, M. Rotter, and F. Salamini. 1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 10(5):1037–1043. Baskarana. P., and N. Jayabalan. 2009. In vitro regeneration of Psoralea corylifolia L. through callus cultures. Plant Biotech. 26:333–336. Bellucci, M. F. De Marchis N. Ferradini, A. Pompa, F. Veronesi, and D. Rosellini. 2015. A mutant Synechococcus gene encoding glutamate 1-semialdehyde aminotransferase confers gabaculine resistance when expressed in tobacco plastids. Plant Cell Rep. 34:2127–2136. Bendich, A. J.. 1987. Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279−282. Benjakul, S., S. Phatcharat, A. Tammatinna, W. Visessanguan, and H. Kishimura. 2008. Improvement of gelling properties of lizardfish mince as influenced by microbial transglutaminase and fish freshness. J. Food Sci. 73(6):239–246. Blanc, G., L. Lardet, A. Martin, J. L. Jacob, and M. P. Carron. 2002. Regulation of growth, development and whole organism physiology-differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Mull. Arg.). J. Exp. Bot. 53(373):1453–1462. Block, M. D., J. Schell, and M. V. Montagu. 1985. Chloroplast transformation by Agrobacterium tumefaciens. EMBO J. 4:1367−1372. Bock, R.. 2001. Transgenic chloroplasts in basic research and plant biotechnology. J. Mol. Biol. 312:425-438. Bock, R.. 2014. Genetic engineering of the chloroplast: novel tools and new applications. Curr. Opin. Biotechnol. 26:7–13. Botchan, M., J. Stringer, T. Mitchison, and J. Sambrook. 1980. Integration and excision of SV40 DNA from the chromosome of a transformed cell. Cell 20:143–152. Boynton, J. E., N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson, A. R. Jones, B. L. Randolph-Anderson, D. Robertson, T. M. Klein, and K. B. Shark. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534−1538. Bříza, J., J. Vlasák, Š. Ryba, V. Ludvíková, and H. Niedermeierová. 2013. Transformation of tobacco cpDNA with fusion E7GGG/gus gene and homologous recombination mediated elimination of the marker gene. Biotechnol. & Biotechnol. Eq. 27(2):3644-3648. Buah, J., J. W. Tachie-Menson, G. Addae, and P. Asare. 2011. Sugarcane juice as an alternative carbon source for in vitro culture of plantains and bananas. Am. J. Food Technol. 6(8):685–694. Buechel, S., A. Leibfried, J. P. C. To, Z. Zhao, S. U. Andersen, J. J. Kieber, and J. U. Lohmann. 2009. Role of A-type Arabidopsis Response Regulators in meristem maintenance and regeneration. Eur. J. Cell Bio. 89(2–3):279–284. Carrer, H., T. N. Hockenberry, Z. Svab, and P. Maliga. 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241:49−56. Chakrabarty, D., P. K. Trivedi, M. Shri, P. Misra, M. H. Asif, S. Dubey, S. Kumar, A. Rai, M. Tiwari, D. Shukla, A. Pandey, D. Nigam, R. D. Tripathi, and R. Tuli. 2010. Differential transcriptional expression following thidiazuron-induced callus differentiation developmental shifts in rice. Plant Biol. 12:46–59. Chu, C. C., C. C. Wang, C. S. Sun, C. Hsu, K. C. Yin, C. Y. Chu, and F. Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668. Chung, M.-E., I-H. Yeh, L.-Y. Sung, M.-Y. Wu, Y.-P. Chao, I-S. Ng, and Y.-C. Hu. 2017. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol. Bioeng. 114:172-183. Damodaran, S.. 2010. Aminoácidos, peptídeos e proteínas. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Química de alimentos de Fennema (4th ed). Porto Alegre: Artmed. p. 179–262. Daniell, H.. 2006. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol. J. 1:1071–9. Daniell, H., J. Vivekananda, B. L. Nielsen, G. N. Ye, K. K. Tewari, and J. C. Sanford. 1990. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA 87:88−92. Daniell, H., M. S. Khan, and L. Allison. 2002. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7:84-91. Daniell, H., R. Datta, S. Varma, S. Gray, and S. B. Lee. 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16:345−348. Day, A., and M. Goldschmidt-Clermont. 2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol. J. 9:540–553. de Carvalho, M. H. C., B. V. Le, Y. Zuily-Fodil, A. T. P. Thi, and K. T. T. Van. 2000. Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci. 159:223–232. Dey, M., S. Bakshi, G. Galiba, L. Sahoo, and S. K. Pand. 2012. Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. Indica) using TDZ. 3 Biotech. 2(3):233-240. Din, A. R. J. M., F. I. Ahmad, A. Wagiran. A. A. Samad, Z. Rahmat, and M. R. Sarmidi. 2016. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J. Biol. Sci. 23:S69–S77. Dłużewska, E., K. Marciniak-Lukasiak, and N. Kurek. 2015. Effect of transglutaminase additive on the quality of gluten-free bread. J. Food. 13(1):80–86. Dudasova, Z., A. Dudas, and M. Chovanec. 2004. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 28: 581–601. Duran, R., M. Junqua, J. M. Schmitter, C. Gancet, and P. Goulas. 1998. Purification, characterisation, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS 683.68. Biochimie. 80:313–319. Erikson, O., M. Hertzberg, and T. Näsholm. 2004. A conditional marker gene allowing both positive and negative selection in plants. Nat. Biotechnol. 22:455-458. Fan, M., C. Xu, K. Xu, and Y. Hu. 2012. Lateral organ boundaries domain Transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22:1169–1180. Færgemand, M., and K. B. Qvist. 1997. Transglutaminase: effect on rheological properties, microstructure and permeability of set style acid skim milk gel. Food Hydrocoll. 11:287–292. FAO Food and Agriculture Organization of the United Nations. 2015. Rice market monitor Vol. XVⅢ, (4). Fischer, N., O. Stampacchia, K. Redding, and J. Rochaix. 1996. Selectable marker recycling in the chloroplast. Mol. Gen. Genet. 251:373−380. Fischer, U., M. Kuhlmann, A. Pecinka, R. Schmidt, and M. F. Mette. 2008. Local DNA features affect RNA directed transcriptional gene silencing and DNA methylation. Plant J. 53:1-10. Forsum, O., H. Svennerstam, U. Ganeteg, and T. Näsholm. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol. 179: 1058–1069. Fromm, H., M. Edelman, D. Aviv, and E. Galun. 1987. The molecular basis of rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J. 11:3233−3237. Gadekar, Y. P., B. D. Sharma, A. K. Shinde1, and S. K. Mendiratta. 2015. Restructured meat products - production, processing and marketing: a review. Indian J. Small Rumin. 21(1) : 1-12. Gamborg, O. L., and G. C. Phillips. 1995. Plant cell, tissue and organ culture –fundamental methods. Heidelberg, New York: Springer-Verlag. Ganeshan, S., S. V. Chodaparambil, M. Båga, D. B. Fowler, P. Hucl, B. G. Rossnagel, and R. N. Chibbar. 2006. In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tiss. Org. Cult. 85: 63–73. Gaspar, A. L. C., and S. P. de Góes-Favoni. 2015. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem. 171:315–322. Gerber, U., U. Jucknischke, S. Putzien, and H. L. Fuchsbauer. 1994. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem. J. 299:825–829. Gisby, M. F., E. A. Mudd, and A. Day. 2012. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiol. 160:2219–2226. Glaszmann, J. C.. 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74: 21–30. Gordon, S. P., V. S. Chickarmane, C. Ohno, and E. M. Meyerowitz. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. USA 106:16529-16534. Grimes, H. D., and T. K. Hodges. 1990. The inorganic NO3 : NH4 ratio influences plant regeneration and auxin sensitivity in primary callus derived from immature embryos of indica rice (Oryza sativa L.). J. Plant Physiol. 136: 362–367. Guda, C., S. B. Lee, and H. Daniell. 2000. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep. 19:257–262. Hagemann R.. 2004. The sexual inheritance of plant organelles. In: Molecular Biology and Biotechnology of Plant Organelles, Daniell and Chase (eds.), Springer, Heidelberg, p. 93–113. Hättasch, C., H. Flachowsky, and M.-V. Hanke. 2009. Evaluation of an alternative D-amino acid/DAAO selection system for transformation in apple (Malus × domestica Borkh.). J. Hortic. Sci. Biotechnol. 2009. 84:188–194. Htwe, N. N., M. Maziah, H. C. Ling, F. Q. Zaman, and A. M. Zain. 2011. Responses of some selected Malaysian rice genotypes to callus induction under in vitro salt stress. Afr. J. Biotechnol. 10(3):350-362. Huetteman, A., and E. J. Preece. 1993. Thiodiazuran: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. 33:105-119. Islam, M. M., Z. Y. Roly, Y. Lee, and M. Khalekuzzaman. 2014. In vitro Propagation and genetic transformation system using immature embryo in elite rice (Oryza sativa L.) cultivars. Plant Breed. Biotech. 2(1):88~96. Jackson, S. P.. 2002. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687–696. Jogeswar, G., D. Ranadheer, V. Anjaiah, and P. B. K. Kishor. 2007. High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell. Dev. Biol.-Plant. 43:159–166. Jones, J. D. G., Z. Svab, E. C. Harper, C. D. Hurwitz, and P. Maliga. 1987. A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol. Gen. Genet. 210:86–91. Kabir. A. H., I. Mahfuz, M. A. Razvy, M. B. Ahmed, and M. F. Alam. 2008. Indirect organogenesis and somaclonal variation in four rice cultivars of Bangladesh. J. Appl. Sci. Res. 4(4): 451-458. Kamat, M. G, and P. S. Rao. 1978. Vegetative multiplication of eggplants (Solanum melongena L.) using tissue culture techniques. Plant Sci. Lett. 13:57-65. Khan, M. S., and P. Maliga. 1999. Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat. Biotechnol. 17:910-915. Khan, M. S., W. Hameed, M. Nozoe, and T. Shiina. 2007. Disruption of the psbA gene by the copy correction mechanism reveals that the expression of plastid-encoded genes is regulated by photosynthesis activity. J. Plant Res. 120:421-430. Kieliszek, M., and A. Misiewicz. 2014. Microbial transglutaminase and its application in the food industry. A review. Folia. Microbiol. 59:241–250. Kittiwongwattana, C., K. Lutz, M. Clark, and P. Maliga. 2007. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol. 64:137−143. Klaus, S. M. J., F. C. Huang, T. J. Golds, H.-U. Koop. 2004. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22:225-229. Kolodner, R. D., and K. K. Tewari. 1975. Chloroplast DNA from higher plants replicates by both the Cairns and rolling circle mechanism. Nature 256:708–711. Kumar, S., A. Dhingra, and H. Daniell. 2004. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol. Biol. 56:203−216. Kunnimalaiyaan, M., and B. L. Nielsen. 1997a. Chloroplast DNA replication: mechanism, enzymes and replication origins. J. Plant Biochem. Biotechnol. 6:1–7. Kunnimalaiyaan, M., and B. L. Nielsen. 1997b. Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 25:3681–3686. Kuraishi, C., J. Sakamoto, K. Yamazaki, Y. Susa, C. Kuhara, and T. Soeda. 1997. Production of restructured meat using microbial transglutaminase without salt and cooking. J. Food Sci. 62:488–515. Kuraishi, C., K. Yamazaki, and Y. Susa. 2001. Transglutaminase: Its utilization in the food industry. Food Rev. Int. 17:221–246. Kwon, T., E. Huq, and D. L. Herrin. 2010. Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis. PNAS 107:13954–13959. Lafontaine , D., and D. Tollervey. 1996. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 24:3469–3471. Langbecker, C., G. N. Ye, D. L. Broyles, L. L. Duggan, C. W. Xu, P. T. J. Hajdukiewicz, C. L. Armstrong, and J. M. Staub. 2004. High frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiol. 135:39–46. Lee, S. M., K. Kang, H. Chung, S. H. Yoo, X. M. Xu, S. -B. Lee, J. J. Cheong, H. Daniell, and M. Kim. 2006. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Cells 21:401−410. Lelivelt, C., M. McCabe, C. Newell, C. DeSnoo, K. Dun, I. Birch-Machin, J. Gray, K. Mills, and J. Nugent. 2005. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 58:763−774. Li, D., N. Tang, Z. Fang, Y. Xia, and M. Cao. 2016. Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. J. Nanosci. Nanotechnol. 16:12194–12201. Lieber, M. R., Y. Ma, U. Pannicke, and K. Schwarz. 2004. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair 3: 817–826. Liu, C. W., C. C. Lin, J. C. Yiu, J. J. W. Chen, and M. J. Tseng. 2008. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor. Appl. Genet. 117:75–88. Liu, S., D. Zhang, M. Wang, W. Cui, K. Chen, G. Du, J. Chen, and Z. Zhou. 2011. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide. Microb. Cell Fact. 10(112):1–7. Lovett, P. N., and N. Haq. 2013. Progress in developing in vitro systems for shea tree (Vitellaria paradoxa C.F. Gaertn.) propagation. For. Trees Livelihoods. http://dx.doi.org/10.1080/14728028.2013.765092 Lugo, S. K., M. Kunnimalaiyaan, N. K. Singh, and B. L. Nielsen. 2004. Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci. 166:151–161. Lutz, K. A., A. K. Azhagiri, T. Tungsuchat-Huang, and P. Maliga. 2007. A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol. 145:1201−1210. Lutz, K. A., and P. Maliga. 2007. Construction of marker-free transplastomic plants. Curr. Opin. Biotechnol. 18:107−114. Lutz, K. A., Z. Svab, and P. Maliga. 2006b. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat. Protocols 1:900−910. Madanala R., V. Gupta, A. . Pandey, S. Srivastava, V. Pandey, P. K. Singh, and R. Tuli. 2015. Tobacco chloroplasts as bioreactors for the production of recombinant superoxide dismutase in plants, an industrially useful enzyme. Plant Mol. Biol. Rep. 33:1107–1115. Maliga, P.. 2002. Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5:164−172. Maliga, P.. 2003. Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21:20−28. Maliga, P.. 2004. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55:289−313. Maliga, P.. 2005. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem. Photobiol. Sci. 4:971-976. Maliga, P., Z. Svab, E. C. Harper, and J. D. G. Jones. 1988. Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol. Gen. Genet. 214:456–459. Maliga, P., and Z. Svab. 2011. Engineering the plastid genome of Nicotiana sylvestris , a diploid model species for plastid genetics. In: Plant chromosome engineering: methods and protocols. Birchler, J. J. (ed), Springer Science+ Business Media, LLC. New York. p. 37–50. Mercier, H., B. M. Souza, J. E. Kraus, R. M. Hamasaki, and B. Sotta. 2003. Endogenous auxin and cytokinin contents associated with shoot formation in leaves of pineapple cultured in vitro. Braz. J. Plant Physiol. 15(2):107-112. Mohd Din, A. R. J., F. I. Ahmad, A. Wagiran, A. A. Samad, Z. Rahmat, and M. R. Sarmidi. 2016. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J. Biol. Sci. 23:S69–S77. Moing, A., F. Carbonne, M. H. Rashad, and J.-P. Gaudillere. 1992. Carbon fluxes in mature peach leaves. Plant Physiol. 100(4):1878–1884. Moreno, J. C., N. Tiller, M. Diez, D. Karcher, M. Tillich, M. A. Schöttler, and R. Bock. 2017. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. J. Exp. Bot. 68:2199–2218. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497. Odahara, M., T. Inouye, Y. Nishimura, and Y. Sekine. 2015. RECA plays a dual role in the maintenance of chloroplast genome stability in Physcomitrella patens. Plant J. 84:516–526. Odjakova M, and Conger B. 1999. The influence of osmotic pretreatment and inoculum age on the initiation and regenerability of switchgrass suspension cultures. In Vitro Cell. Dev. Biol. Plant 35:442–444. Oldenburg, D. J., and A. J. Bendich. 2004. Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J. Mol. Biol. 344:1311–1330. Ozawa, K., and H. Kawahigashi. 2006. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 170: 384–393. Pawar, B., P. Kale, J. Bahurupe, A. Jadhav, A. Kale, and S. Pawar. 2015. Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Sci. 22(6): 283-289. Petri, N., and B. L. Alburquerque. 2005. The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptⅡ-transformed leaf tissues. Plant Cell Tiss. Org. Cult. 80:271–6. Phillips, G. C.. 2004. In vitro morphogenesis in plants—recent advances. In Vitro Cell Dev. Biol. Plant 40(4):342–345. Priya, A. M., S. K. Pandian, and M. Ramesh. 2011. Effect of NaCl on in vitro plant regeneration from embryogenic callus cultures of ''cv IR 64'' indica rice (Oryza sativa L.) Afr. J. Biotechnol. 10(36):6947-6953. Quesada-Vargas, T., O. N. Ruiz, and H. Daniell. 2005. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol. 138:1746–1762. Rachel, N. M., and J. N. Pelletier. 2013. Biotechnological applications of transglutaminases. Biomolecules 3:870-888. Rickert, Mathias, P. Strop, V. Lui, J. Melton-Witt, S. E. Farias, D. Foletti, D. Shelton, J. Pons, and A. Rajpal. 2016. Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci. 25:442—455. Rocha, D. I., C. C. Monte-Bello, L. C. B. Aizza, and M. C. Dornelas. 2016. A passion fruit putative ortholog of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed throughout the in vitro de novo shoot organogenesis developmental program. Plant Cell Tiss. Organ. Cult. DOI 10.1007/s11240-015-0933-x. Rocha, D. I., C. C. Monte-Bello, and M. C. Dornelas. 2014. Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tiss. Organ Cult. DOI 10.1007/s11240-014-0663-5. Rowan, B. A., D. J. Oldenburg, and A. J. Bendich. 2010. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J. Exp. Bot. 61:2575–2588. Ruf, S., D. Karcher, and R. Bock. 2007. Determining the transgene containment level provided by chloroplast transformation. PNAS 104:6998–7002. Ruhlman, T., D. Verma, N. Samson, and H. Daniell. 2010. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 152:2088–2104. Sharma, V. K., R. Hänsch, R. R. Mendel, and J. Schulze. 2005. Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.). J. Exp. Bot. 56:1913–1922. Sivamani, E., R. K. DeLong, and R. Qu. 2009. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep. 28:213–221. Skoog, F., and C. O. Miller. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–130. Smigocki, A. C., and L. D. Owens. 1989. Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol. 91:808-811. Stoop, J. M. F., J. D. Williamson, and D. M. Pharr. 1996. Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci. 1(5):139-144. Svab, Z., and P. Maliga. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913−917. Svab, Z., P. Hajdukiewicz, and P. Maliga. 1990. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87:8526−8530. Taylor, A. F., and G. R. Smith. 2016. Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. Genes Dev. 13:890–900. Thomas, J. C., and F. R. Katterman. 1986. Cytokinin activity induced by thidiazuron. Plant Physiol. 81: 681–683. Timmis, J. N., M. A. Ayliffe, C. Y. Huang, and W. Martin. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5:123–135. Toppo, E., M. Ramakrishnan, S. A. Ceasar, K. Sivasankaran, A. Premkumar, and S. Ignacimuthu. 2014. Regeneration from mature scutellum explants of rice variety ir64 (oryza sativa L.) through direct and indirect organogenesis. J. Glob. Agric. Ecol. 1(1):1-9. Tsai, G. J., S. M. Lin, and S. T. Jiang. 1996. Transglutaminase from Streptoverticillium ladakanum and application to minced fish product. J. Food Sci. 61:1234–38. Tseng, M. J., M. T. Yang, W. R. Chu, and C. W. Liu. 2014. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process. In: Chloroplast biotechnology: methods and protocols, Maliga, P., (ed.), Humana, New Jersey, p. 355–366. Vaucheret, H.. 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20:759–71. Verma, D., and H. Daniell. 2007. Chloroplast vector systems for biotechnology applications. Plant Physiol. 145:1129−1143. Verma, D., N. P. Samson, V. Koya, and H. Daniell. 2008. A protocol for expression of foreign genes in chloroplasts. Nat. Protoc. 3:739–758. Wakasa Y., and F. Takaiwa. 2012. Use of a callus-specific selection system to develop transgenic rice seed accumulating a high level of recombinant protein. In: Transgenic plants methods and protocols, Dunwell and Wetten (eds.), Humana Press, London. p. 467-479. Wang, Y., Y. Saitoh, T. Sato, S. Hidaka, and K. Tsutsumi. 2003. Comparison of plastid DNA replication in different cells and tissues of the rice plant. Plant Mol. Biol. 52: 905–913. Wani, S. H., G. S. Sanghera, and S. S. Gosal. 2011. An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice (Oryza sativa L.) variety PAU 201. New Biotechnol. 28(4):418-422. Wannathong T., J. C. Waterhouse, R. E. B. Young, C. K. Economou, and S. Purton. 2016. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 100:5467–5477. Würdig, J., H. Flachowsky, A. Saß, A. Peil, and M.-V. Hanke. 2015. Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol. Breeding 35:95. Yang, M. T., C. H. Chang, J. M. Wang, T. K. Wu, Y. K. Wang, C. Y. Chang, and T. T. Li. 2011. Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense. J. Biol. Chem. 286(9):7301–7307. Yin L., Y. Tao, K. Zhao, J. Shao, X. Li, G. Liu, S. Liu, and L. Zhu. 2007. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics 7:755–768. Yokoyama, K., N. Nio, and Y. Kikuchi. 2004. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 64(4):447–54. Yu, D., H. M. Ellis, E.-C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. PNAS 97: 5978–5983. Yu, Y. J, S. C. Wu, H. H. Chan, Y. C. Chen, Z. Y. Chen, and M. T. Yang. 2008. Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli . Appl. Microbiol. Biotechnol. 81:523–532. Zhang, D. X., M. Wang, J. Wu, L. Cui, G. C. Du, and J. Chen. 2008. Two different proteases from Streptomyces hygroscopicus are involved in transglutaminase activation. J. Agric. Food Chem. 56:10261–4. Zhang, S., X. Liu, Y. Lin, G. Xie, F. Fu, H. Liu, J. Wang, S. Gao, H. Lan, and T. Rong. 2011. Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss. Org. Cult. 105:29–37. Zhao, W., S. Zheng, and H.-Q. Ling. 2011. An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell Tiss. Organ Cult. 106:475–483. Ziegler, R. S., and A. Barclay. 2008. The relevance of rice. Rice. 1: 3-10. Zoubenko, O. V., Allison L. A., Svab Z., and Pal Maliga. 1994. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res. 22:3819-3824. Zuraida, A. R., B. Naziah, Z. Zamri, and S. Sreeramanan. 2011. Efficient plant regeneration of Malaysian indica rice MR 219 and 232 via somatic embryogenesis system. Acta Physio Plant. 33: 1913–1921.
摘要: 本論文之目的為:(1) 增進水稻成熟種子癒傷組織誘導再生芽體、(2) 建立篩選抗生素及D-胺基酸對水稻種子發芽和癒傷組織芽體再生之抑制濃度、(3) 應用葉綠體轉殖水稻表現轉榖氨醯胺酵素基因、(4) 建立剔除篩選基因水稻表現轉榖氨醯胺酵素。 本研究採用水稻成熟種子所誘導的癒傷組織作為水稻葉綠體基因轉殖之培殖體,並探討維生素、有機氮源、植物生長調節劑等對水稻癒傷組織誘導再生芽體之影響。維生素試驗顯示MS維生素處理有較高'每盤芽體數'主要經由增加'每盤形成芽體之癒傷組織數'。有機氮源試驗顯示以不添加有機氮源處理組可誘導產生最多再生芽體,其次依序為casamino acid、tryptone、peptone。''台農67號'' (''TN 67'')及''台稉9號'' (''TK9'')二品種間對於自癒傷組織誘導再生芽體並無顯著差異,且均有良好再生芽體誘導效率。 TDZ、BA和IAA三種植物生長調節劑影響水稻癒傷組織誘導再生芽體之試驗結果顯示,在20個組合中有9個組合每盤芽體數大於50個,其中以A12組有最高的再生芽體誘導效率,其植物生長調節劑之組合為0.5 mg/L TDZ、2.0 mg/L BA、0.1 mg/L IAA。多變量分析(multivariate analysis of variance, MANOVA)顯示,TDZ、BA、IAA對水稻癒傷組織誘導再生芽體呈顯著影響(p < 0.01),且TDZ和IAA間、BA和IAA間二項亦顯著呈現具有交感效應(p < 0.01)。BA和IAA之交感效應顯示,2 ppm BA以搭配0.1 ppm IAA、3 ppm BA以搭配0.2 ppm IAA有較多的'每盤芽體數',推算BA和IAA之比例分別為20: 1、15: 1時可誘導較多芽體形成,且顯示在較低濃度時,需較高的BA/IAA比例。 本研究測試不同濃度spectinomycin、streptomycin、D-alanine對水稻種子發芽、再生芽體誘導之抑制效果,以作為葉綠體基因轉殖採用篩選濃度之參考依據。篩選試劑對於水稻種子發芽之影響,以200 ppm streptomycin對水稻種子發芽明顯呈現抑制作用,可作為篩選濃度之參考。500 ppm D-alanine (5.6 mM)可以有效抑制水稻種子發芽,此濃度可應用於葉綠體基因轉殖之篩選。對於水稻癒傷組織誘導再生芽體之影響,當spectinomycin濃度增加至700 ppm時,每個培養皿仍可再生22個芽體,抑制效果不佳。當streptomycin濃度200 ppm時,明顯抑制再生芽體,所誘導的芽體白化情形明顯,黃化或白化的癒傷組織和芽體可作為篩選的抑制指標。200 ppm (2.2 mM) D-alanine處理抑制芽體再生且造成癒傷組織明顯褐化,可為篩選之依據。 轉穀氨醯胺酵素(transglutaminase, TGase)可催化蛋白分子內或蛋白間形成類胜肽鍵結(isopeptide bond),主要應用在食品、醫藥和紡織工業。本研究經由葉綠體基因轉殖利用水稻葉綠體作為分子農場表現轉穀氨醯胺酵素(transglutaminase, TGase)。pMT92-EPA和pMT92-ETA二個轉殖載體各自經基因槍轟撃2,000個水稻癒傷組織,經過streptomycin篩選,分別獲得14和20株芽體再生之水稻植株,經PCR和RT-PCR分析,其中各有1和3株具有轉殖基因及其表現,包括tga、eGFP、aadA,水稻植株編號分別為EPA-5和ETA-4、12、18。利用數位影像系統Kodak image station 4000MM進行eGFP螢光分析,EPA-5和ETA-4、12、18水稻葉片可偵測到eGFP螢光表現。葉綠體基因組遺傳為母系遺傳,將採收後種子(T1)進行發芽篩選試驗。經PCR分析,顯示轉殖基因tga、eGFP、aadA可傳遞至ETA-18之T1子代ETA-18_2, 6, 7。 本研究利用葉綠體基因轉殖之標記基因剔除技術,建立表現轉穀氨醯胺酵素(transglutaminase, TGase)之無篩選基因葉綠體基因轉殖水稻,並以環狀和直線狀DNA二種轉殖載體進行基因槍轟擊。以直線型載體pMT92GP-sA進行轉殖,獲得7株再生水稻植株。經PCR和RT-PCR分析,僅檢測到1株GP-sA-lin-3具有轉殖基因tga、gus、aadA,且偵測到三個基因表現,顯示並未將篩選基因aadA剔除。 環狀pMT92GP-sDA轉殖載體部分,分別以streptomycin或D-alanine篩選,各獲得23、17株再生水稻植株。PCR分析結果顯示,利用streptomycin篩選有二株(GP-sDA-str-7、21)具有轉殖基因tga、gus、aadA、daao。RT-PCR分析亦偵測轉殖基因表現,顯示二株水稻植株均並未剔除篩選基因aadA、daao。利用D-alanine篩選所得之水稻植株,PCR與RT-PCR分析顯示有二株(GP-sDA-ala-8、17)具有轉殖基因tga、gus及其表現,其中GP-sDA-ala-8仍具篩選基因aadA、daao及其表現,而GP-sDA-ala-17則未檢測出篩選基因aadA、daao。GUS組織化學之活性染色分析顯示4株水稻均呈現GUS活性染色反應。從所獲得的水稻植株與具有轉殖基因植株數,streptomycin和D-alanine篩選準確率分別為8.7和11.8%,其中經D-alanine篩選之GP-sDA-ala-17顯示剔除篩選基因。
The purpose of this thesis includes: (1) Optimization for shoot regeneration from rice mature seed-derived callus, (2) Establishment of inhibitory concentration of selection agents on seeds germination and callus regeneration of rice, (3) Application of transplastomic rice to express transglutaminase gene, (4) Toward establishing an efficient selectable marker elimination system for stable expression of transglutaminase in transplastomic rice. In this thesis, the callus derived from matured seed of rice were used as the explants of biolistic chloroplast transformation. The effects of vitamins, organic nitrogen sources and plant growth regulators on the shoots regeneration from rice callus were investigated. In the vitamins comparison, the results indicated that the contribution of MS vitamins to the 'shoot number per plate' was mainly influenced through the 'percentage of shooting callus'. Regarding the organic nitrogen sources, the maximum 'shoot number per plate' could be induced without organic nitrogen source, followed by casamino acid, tryptone and peptone. About the rice cultivars Tainung 67 and Taiken 9, there was no significant difference between the two cultivars on the shoot regeneration, and both have good performance. Different combinations of plant growth regulators, TDZ, BA and IAA, were used to induce shoots from rice callus. The results showed that there were nine combinations can induce more than 50 shoots per plate in 20 combinations. Among them, A12 has the highest induction efficiency of regenerated shoots, the combination of its plant growth regulators includes 0.5 mg/L TDZ, 2.0 mg/L BA and 0.1 mg/L IAA. MANOVA showed that TDZ, BA and IAA had significant effects on the induction of shoots from rice callus (p < 0.01). Interaction effect between TDZ and IAA, BA and IAA also showed significant (p < 0.01). The interaction effect analysis of BA and IAA revealed that 2 ppm BA with 0.1 ppm IAA, 3 ppm BA with 0.2 ppm IAA can have more 'shoot number per plate'. The ratio of BA and IAA is estimated to be 20: 1 and 15: 1, and shows a higher BA/IAA ratio at lower concentrations. For the screening of chloroplast transformants, the inhibitory effects of different concentrations of spectinomycin, streptomycin and D-alanine on seed germination, regenerated shoots induction were tested. On the effects of inhibition rice seed germination, 200 ppm streptomycin is sufficient to inhibit the germination of rice seeds, which could be used as a reference for selection concentration. D-alanine can effectively inhibit rice germination at 500 ppm (5.6 mM), this concentration can be applied to the selection of chloroplast transformants. The result of spectinomycin on the inhibition of shoot induction from rcie callus indicate that, when the concentration was increased to 700 ppm, there were still 22 shoots per plate, the inhibition effect was poor. In addition, there were significantly inhibition on regenerated shoot when streptomycin was 200 ppm, the formation of albino shoot was more obvious, yellow or whitening calli and shoots can be used as an indicator of selection. While shoot induction from callus subjected to D-alanine, 200 ppm (2.2 mM) inhibited the shoot regeneration and resulted in the browning of callus, can be used as working concentration. Transglutaminase (TGase) can catalyze the formation of an isopeptide bond, has been applied in food, pharmaceuticals and textiles industry. In this study, the transplastomic rice was used as a molecular farming to express TGase. The transgenic vectors pMT92-EPA and pMT92-ETA were each used to bombard 2,000 rice calli by gene gun. After selection with streptomycin, 14 and 20 regenerated rice plants were obtained respectively. Each of them has 1 and 3 lines, respectively EPA-5 and ETA-4, 12, 18, can detect the transgenic genes and transgene expression, including tga, eGFP and aadA by PCR and RT-PCR. The eGFP fluorescence can be observed also in the leaves of EPA-5 and ETA-4, 12, 18 by using Kodak image station 4000MM. The genetics of the chloroplast genome are maternal inheritance. The harvested T1 seeds were subjected to germination selection. According to the PCR analysis, transgenic genes of tga, eGFP and aadA were stably transmitted to ETA-18 progeny, including ETA-18_2, 6, and 7 plants. In this study, the marker gene elimination technique of chloroplast gene transfer was used to establish a marker free transplastomic plant for TGase gene expressing. The transgenic vectors were divided into two forms of circular and linear DNA. The linear transgenic vectors pMT92GP-sA was used for bombardment, and obtained 7 lines of regenerated rice. PCR and RT-PCR analysis showed that one plant GP-sA-lin-3 was detected only in the regenerated rice of pMT92GP-sA with the transgenic gene tga, gus and aadA, and their expression. Indicating that the selection gene aadA was not removed. The transgenic plants of circular pMT92GP-sDA were selected with streptomycin or D-alanine respectively. Each of which produces 23 and 17 regenerated rice plants. PCR analysis showed that two lines of GP-sDA-str-7 and 21 obtained by streptomycin screening contained the transgenic gene tga, gus, aadA and daao. RT-PCR analysis also detected the expression of all transgenic genes, indicating that two rice plants did not eliminate the selectable marker gene aadA and daao. The PCR and RT-PCR analysis of rice plants obtained by D-alanine selection showed that two plants GP-sDA-ala-8 and 17 had the transgenic gene tga and gus, and their expression. Among them, GP-sDA-ala-8 still had selection genes aadA, daao and its expression, but not detected in GP-sDA-ala-17. GUS staining analysis showed that the four strains of rice showed GUS activity. The correct rate of streptomycin and D-alanine selection was 8.7 and 11.8%, respectively, from the number of regenerated rice plants and the number of plants with transgenic genes. The GP-sDA-ala-17 selected by D-alanine showed that the selection marker gene had been eliminated.
URI: http://hdl.handle.net/11455/95714
文章公開時間: 10000-01-01

檔案 大小格式 
nchu-106-8097032001-1.pdf7.44 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。