Please use this identifier to cite or link to this item:
標題: 轉殖調控開花基因至春石斛蘭之研究
Studies on Transformation of Flowering Regulating Genes into Nobile Type Dendrobium Orchid
作者: 董怡君
Yi-Chun Tung
關鍵字: 春石斛蘭
Nobile type Dendrobium
Gene transformation
Flowering-Regulating Genes
引用: 市橋正一、蔡媦婷。2011。日本之春石斛蘭花產業及基礎生理研究。植物種苗 13(3): 1-18。 邱怡芬。2007。文心蘭中調控開花時間相關基因之選殖與特性分析。中興大學生物科技學研究所碩士學位論文。105p。 邱燕欣、陳威臣、陳金枝。2011。蕙蘭健康種苗生產與特定病毒檢測管控體系之建立。花卉研究團隊成果發表會專刊:41-50。 金石文、呂廷森、陳福旗。2010。春石斛育種及種苗生產技術之研發。2010花卉研究團隊研究現況與展望研討會專刊: 49-61。 金石文、呂廷森、陳福旗。2011。春石斛的品種趨勢及新品種開發。花卉研究團隊成果發表會專刊: 97-106。 范秀姿。2014。迷你及早開花蝴蝶蘭轉殖系統之建立-GA2ox6及早開花基因OSMADS14之應用。中興大學分子生物學研究所碩士學位論文。59p。 徐曄春。2017。庭院深深蘭花香 (四)-附生樹幹生長的蘭花。花卉 (3): 41-43。 許嘉錦。2014。春石斛蘭產業發展與育種方向。臺中區農業專訊 84:4 - 7 許嘉錦。2015。春石斛蘭之栽培技術。臺中區農業專訊 (88): 4-7。 楊旻憲、許嘉錦。2015。不同海拔高度變溫處理對春石斛蘭開花之影響。臺中區農業改良場研究彙報 (129): 1-10。 楊舜閔。2015。春石斛蘭春化作用相關基因之選殖與轉殖。中興大學園藝學系碩士學位論文。86p。 鄒成勇、劉燕。2010。我國石斛屬植物研究進展。安徽農業科學 38(12): 6164-6166。 聶小容。2005。石斛蘭花期和花色的轉基因研究。四川農業大學碩士學位論文。62p。 魏芳明、洪惠娟、楊旻憲。2011。春石斛蘭栽培管理技術。臺中區農業專訊 74: 4-6。 魏芳明。2010。春石斛蘭研究現況與展望。2010花卉研究團隊研究現況與展望研討會專刊: 63-70。 Alexandre, C. M. and L. Hennig. 2008. FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59: 1127-1135. Ausín, I., C. Alonso-Blanco, J. A. Jarillo, L. Ruiz-García, and J. M. Martínez-Zapater. 2004. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. genet. 36(2): 162. Bastow, R., J. S. Mylne, C. Lister, Z. Lippman, R. A. Martienssen, and C. Dean. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427(6970): 164-167. Bäurle, I. and C. Dean. 2006. The timing of developmental transitions in plants. Cell 125(4): 655-664. Bui, A. Q. and S. D. O''Neill. 1998. Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol. 116: 419-428. Caddick, M. X., A. J. Greenland, I. Jepson, K. P. Krause, N. Qu, K. V. Riddell, M. G. Salter, W. Schuch, U. Sonnewald, and A. B. Tomsett. 1998. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat. Biotechnol. 16: 177-180. Chang, Y. Y., Y. F. Chiu, J. W. Wu, and C. H. Y.ang. 2009. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50: 1425-1438. Chao, Y. T., S. H. Yen, J. H. Yeh, W. C. Chen, and M. C. Shih. 2017. Orchidstra 2.0-A transcriptomics resource for the orchid family. Plant Cell Physiol. 58(1): e9. Coen, E. S., and E. M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353(6339): 31-37. da Silva, J. A. T., J. Dobránszki, J. C. Cardoso, S. F. Chandler, and S. Zeng. 2016. Methods for genetic transformation in Dendrobium. Plant Cell Rep. 35: 483-504. Davière, J. M. and P. Achard, P. 2013. Gibberellin signaling in plants. Development 140(6): 1147-1151. De Lucia, F., P. Crevillen, A. M. Jones, T. Greb, and C. Dean. 2008. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. USA 105: 16831-16836. de Montaigu, A., R. Tóth, and G. Coupland. 2010. Plant development goes like clockwork. Trends Genet. 26(7): 296-306. Ding, L., Y. Wang, and H. Yu. 2013. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell physiol. 54: 595-608. Flood, R. G. and G. M. Halloran. 1984. The nature and duration of gene action for vernalization response in wheat. Ann. Bot. 53(3): 363-368. Garoosi, G. A., M. G. Salter, M. X. Caddick, and A. B. Tomsett. 2005. Characterization of the ethanol-inducible alc gene expression system in tomato. J. Exp. Bot. 56: 1635-1642. Gendall, A. R., Y. Y. Levy, A. Wilson, and C. Dean. 2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107(4): 525-535. He, Y., S. D. Michaels, and R. M. Amasino. 2003. Regulation of flowering time by histone acetylation in Arabidopsis. Science 302(5651): 1751-1754. Hedden, P. and V. Sponsel. 2015. A century of gibberellin research. J. Plant Growth Regul. 34(4): 740-760. Hee, K. H., C. S. Loh, and H. H. Yeoh. 2007. Early in vitro flowering and seed production in culture in Dendrobium Chao Praya Smile (Orchidaceae). Plant Cell Rep. 26(12): 2055-2062. Helliwell, C. A., C. C. Wood, M. Robertson, W. James Peacock, and E. S. Dennis. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46: 183-192. Henderson, I. R. and C. Dean. 2004. Control of Arabidopsis flowering: the chill before the bloom. Development 131(16): 3829-3838. Hou, C. J. and C. H. Yang. 2009. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 50(8): 1544-1557. Hsiao, Y. Y., Z. J. Pan, C. C. Hsu, Y. P. Yang, Y. C. Hsu, Y. C. Chuang, Y. C. Chuang, H. H. Shih, W. H. Chen, W. C. Tsai, and H. H. Chen. 2011. Research on orchid biology and biotechnology. Plant Cell Physiol. 52: 1467-1486. Hsu, H. F., C. H. Huang, L. T. Chou, and C. H. Yang. 2003. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794. Jeon, J. S., S. Lee, K. H. Jung, W. S. Yang, G. H. Yi, B. G. Oh, and G. An. 2000. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6: 581-592. Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino, and C. Dean. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290(5490): 344-347. Jung, C. and A. E. Müller. 2009. Flowering time control and applications in plant breeding. Trends Plant Sci. 14(10): 563-573. Kim, D. H. and S. Sung. 2013. Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25(2): 454-469. Kim, D. H., M. R. Doyle, S. Sung, and R. M. Amasino. 2009. Vernalization: winter and the timing of flowering in plants. Annu Rev. Cell Dev. Biol. 25: 277-299. Kobayashi Y., H. Kaya, K. Goto, M. Iwabuchi, and T. Araki. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962. Koh, K. W., H. C. Lu, and M. Y. Chan. 2014. Virus resistance in orchids. Plant Sci. 228: 26-38. Koornneef, M., C. Alonso-Blanco, H. Blankestijn-de Vries, C. J. Hanhart, and A. J. Peeters, 1998. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885-892. Kumar, P., G. S. Rawat, and H. P. Wood. 2011. Diversity and ecology of Dendrobiums (Orchidaceae) in Chotanagpur plateau, India. Taiwania 56(1): 23-36. Lam, Y., T. B. Ng, R. M. Yao, J. Shi, K. Xu, S. C. W. Sze, and K. Y. Zhang. 2015. Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants. J. Evid. Based Complement. Alternat. Med. 2015: 1-25. Lee, H., S. S. Suh, E. Park, E. Cho, J. H. Ahn, S. G. Kim, J. S. Lee, Y. M. Kwon, and I. Lee. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14(18): 2366-2376. Lee, J. and I. Lee. 2010. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 61(9): 2247-2254. Levy, Y. Y., S. Mesnage, J. S. Mylne, A. R. Gendall, and C. Dean. 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297(5579): 243-246. Liljegren, S. J., C. Gustafson-Brown, A. Pinyopich, G. S. Ditta, and M. F. Yanofsky. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWE-R1 specify meristem fate. Plant Cell 11: 1007-1018. Litt, A. and V. F. Irish. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165(2): 821-833. Lu, P., R. Porat, J. A. Nadeau, and S. D. O''Neill. 1996. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8: 2155-2168. MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20: 387-442. Mandel M. A., C. Gustafson-Brown, B. Savidge, and M. F. Yanofsky. 1992. Molecular characterization of the Arabidopsis floral homeotic-gene, APETALA1. Nature 360: 273-277. Murase, K., Y. Hirano, T. P. Sun, and T. Hakoshima. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456(7221): 459. Nan G. L., A. R. Kuehnle, and C. I. Kado. 1998. Transgenic Dendrobium orchid through Agrobacterium-mediated transformation. Malay Orchid Rev. 32: 93-96. Notaguchi, M., M. Abe, T. Kimura, Y. Daimon, T. Kobayashi, A. Yamaguchi, Y. Tomia, K. Dohi, M. Mori, and T. Araki. 2008. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Physiol. 49(11): 1645-1658. Onouchi H., M. I. Igeno, C. Perilleux, K. Graves, and G. Coupland. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900. Peña, L., M. Martín-Trillo, J. Juárez, J. A. Pina, L. Navarro, and J. M. Martínez-Zapater. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat. Biotechnol. 19(3): 263-267. Petchthai, U., A. Chuphrom, and P. S. Huehne. 2015. Recovery of virus-infected Dendrobium orchids by constitutive expression of the cymbidium mosaic virus coat protein gene. Plant Cell Tiss. Organ Cult. 120: 597-606. Ratanasut, K., C. Monmai, and P. Piluk. 2015. Transient hairpin RNAi-induced silencing in floral tissues of Dendrobium Sonia ‘Earsakul’ by agroinfiltration for rapid assay of flower colour modification. Plant Cell Tiss. Organ Cult. 120: 643-654. Reeves, P. H. and G. Coupland. 2001. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol. 126(3): 1085-1091. Roslan, H. A., M. G. Salter, C. D. Wood, M. R. H. White, K. P. Croft, F. Robson, G. Coupland, J. Doonan, P. Laufs, A. B. Tomsett, and M. X. Caddick. 2001. Characterization of the ethanol-inducible alc gene expression system in Arabidopsis thaliana. Plant J. 28(2): 225-235. Schönrock, N., R. Bouveret, O. Leroy, L. Borghi, C. Köhler, W. Gruissem, and L. Hennig. 2006. Polycomb-group proteins repressthe floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev. 20(12): 1667-1678. Schuiteman, A. 2011. Dendrobium (Orchidaceae): to split or not to split. Gardens’ Bulletin Singapore 63(1-2): 245-257. Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R. A. Amasino, and G. Coupland. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20: 898-912. Shitsukawa, N., C. Ikari, S. Shimada, S. Kitagawa, K. Sakamoto, H. Saito, H. Ryuto, N. Fukunishi, T. Abe, S. Takumi, S. Nasuda and K. Murai. 2007. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82(2): 167-170. Sim, G. E., C. S. Loh, and C. J. Goh. 2007. High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). Plant Cell Rep. 26(4): 383-393. Simpson, G. G., P. P. Dijkwel, V. Uesada, I. Henderson, and C. Dean. 2003. FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113(6): 777-787. Sornchai, P., R. Koto, P. Burns, S. Chanprame, W. Imsabai, ans S. Chanprame. 2015. Genetic Transformation of Dendrobium ''Sonia Earsakul'' with Antisense Carica papaya ACO1 Gene. Mod. Appl. Sci. 9: 125-133. Su, C. L., Y. T. Chao, S. H. Yen, C. Y. Chen, W C. Chen, Y. C. A. Chang, and M. C. Shih. 2013. Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol. 54(2): e11 (1-11). Su, H. J. 2000. Dendrobium. In: Huang, T. C. et al. (eds.). Orchidaceae. Flora of Taiwan, 2nd ed. Editioil Committee, Dept. Bot., NTU, Taipei, Taiwan. 5: 839-849. Taoka, K. I., I. Ohki, H. Tsuji, C. Kojima, and K. Shimamoto. 2013. Structure and function of florigen and the receptor complex. Trends Plant Sci. 18(5): 287-294. Trevaskis, B., M. N. Hemming, W. J. Peacock, and E. S. Dennis. 2006. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 140(4): 1397-1405. Trevaskis, B., M. Tadege, M. N. Hemming, W. J. Peacock, E. S. Dennis, and C. Sheldon. 2007. Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol. 143(1): 225-235. Wilson, R. N., J. W. Heckman, and Somerville, C. R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100(1): 403-408. Wood, C. C., M. Robertson, G. Tanner, W. J. Peacock, E. S. Dennis, and C. A. Helliwell. 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl. Acad. Sci. USA 103: 14631-14636. Xiang, L., X. Li, D. Qin, F. Guo, C. Wu, L. Miao, and C. Sun. 2012. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol. Biochem. 58: 98-105. Yan, L., D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103(51): 19581-19586. Yu, H. and C. J. Goh. 2000a. Differential gene expression during floral transition in an orchid hybrid Dendrobium ‘Madame Thong-In’. Plant Cell Rep. 19: 926-931. Yu, H. and C. J. Goh. 2000b. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123: 1325-1336. Yu, H., S. H.Yang, and C. J. Goh. 2002. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol. Biol. 49: 225-237.
摘要: 春石斛蘭(Nobile type Dendrobium)為蘭科石斛蘭屬節生石斛節(Dendrobium section Dendrobium)、以金釵石斛(Den. nobile)為基本種所雜交選育以及改良出之品種群的總稱。其擁有花色繁多豔麗、大且多之花朵、花期長及香氣濃郁等特色,主要作為贈禮盆花,為全球花卉市場的新興盆花。台灣具有多個石斛蘭原種,也是春石斛蘭的重要親本金釵石斛的分佈範圍之一,加上台灣處亞熱帶氣候,氣候上適合進行春石斛蘭的栽培與生產,因此春石斛蘭也為台灣具經濟栽培及種苗外銷潛力的新興蘭科作物。然台灣在新穎及恰當的外銷品種、長的幼年期以及低溫催花等技術上尚待開發及改進。 最近的研究顯示春石斛蘭可能有二個春化調控途徑:1. 依賴類似FLC途徑 (FLC like dependent pathway):春化作用誘導VRN1 (AP1同源基因)表現,進而活化VRN3 (FT 同源基因)的表現之,VRN3也誘導更多VRN1大量表現,進而調控開花整合基因SOC1和FT,誘導開花;2. 不依賴FLC途徑 (FLC independent pathway):春化作用誘導VIN3的大量表現,進一步誘導AGL19表現,最終活化LFY及AP1基因,啟動開花。因此本研究嘗試將SOC1、FT、VRN1、AGL19、VIN3及AP1等基因所構築的農桿菌轉殖載體,以單獨或混合不同載體的方式轉殖到春石斛蘭。本研究目的為以基因轉殖技術創新出調控植株花期的技術,開發出可調控花期之高品質轉殖春石斛蘭,促進台灣花卉產業技術升級。 本研究已完成:1. 共同轉殖p1304-35S-VRN1及p1304-35S-AGL19、2. 轉殖p1301-35S-VIN3、3. 共同轉殖pMLBART AlcA-AlcR-PaFT及pMLBART AlcA-AlcR-PaSOC1、4. 轉殖p1301-Ubi-AP1、5. 共同轉殖p1304-35S-FT和p1301-Ubi-GA2ox6等五種組合之農桿菌感染春石斛PLB、篩選、再生、增殖、健化、出瓶。擬轉殖植株葉片之PCR、RT-PCR分析的結果顯示,轉殖之DnAGL19、VRN1、VIN3、SOC1、FT、AP1及GA2ox6等基因已存在於轉殖葉片之基因組,並表現其mRNA。調查春石斛蘭苗株外表型顯示,擬轉殖株及未轉殖株之葉型、葉色、植株形態及生長狀態等園藝外表型性狀均無差異。但是受限於幼年期的因素,目前並未有開花的現象。
Nobile type Dendrobium is a section of Dendrobium of Orchidaceae which includes many related species. Nobile type hybrids are so named because they contain the species Den nobile. The potted nobile type Dendrobium is one of potential flower industries in global flowers market because of it has diverse beautiful color, gorgeous and elegant flower shape, long flowering period, and rich fragrance. Nobile type Dendrobium also has the great potential to be developed as an economic cultivation in Taiwan. But still have some bottleneck to be overcome that includes lake of new and suit for export varieties, long juvenile stage, and stable and effective flowering forcing technology. Two types of vernalization pathway in nobile type Dendrobium have been proposed. 1. FLC like dependent pathway: VRN1 (AP1 ortholog) expression is induced by low-temperature vernalization, followed by activating VRN3 expression (FT ortholog), and then integrator genes are turn on such as FT and SOC1, which both rapidly promote floral development. 2. FLC independent pathway: Overexpression of VRN3 is induced by low-temperature vernalization, followed by activating AGL19 expression, and then markedly accelerates flowering is achieved by activation of LFY and AP1 expression. In this study, SOC1, FT, VRN1, DnAGL19, VRN3, VIN3 genes are attempted to be engineered into nobile type Dendrobium. The objective of this study is to develop the innovative biotechnologies for regulating flowering time in nobile type Dendrobium with early flowering time, and high marketing value via the art of gene transformation. Hopefully, these efforts could contribute to the sustainable development of Taiwan’s floral industry. Five sets of combination of Agrobacterium mediated transformation were included in this study including: 1. Co-transformation of p1304-35S-VRN1 and p1304-35S-AGL19; 2. Transformation of p1301-35S-VIN3; 3. Co-transformation of pMLBART AlcA-AlcR-PaFT and pMLBART AlcA-AlcR-PaSOC1; 4. Transformation of p1301-Ubi-AP1; 5. Co-transformation of p1304-35S-FT and p1301-Ubi-GA2ox6. Constructed genes had been transformed into the PLB of the nobile type Dendrobium by Agrobacterium-mediated transformation. Regenerated plantlets were selected by antibiotics, induction of multiple shoots and roots formation, proliferation, hardiness, and finally transplanted into 2-inch pot and grown in greenhouse. The results of PCR and RT-PCR analysis of putative transformed plants indicated that the transformed genes were presented in the genome of transformed plants, and expressed its mRNA. There were no differences in leaf shape, leaf color, plant morphology, and growth status between non-transformed and transformed nobile type Dendrobium. The seedlings are in their juvenile stage, and there are no flowers produced at this time.
文章公開時間: 2021-02-07
Appears in Collections:園藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.