請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95718
標題: 非農藥資材對外銷蝴蝶蘭苗控制水苔介質檢疫害蟲之研究
Non-chemical Pesticide Control Pest in Sphagnum Moss Medium of Phalaenopsis Seedlings for Export
作者: 詹凱竣
Kai-Chun Chan
關鍵字: 蝴蝶蘭苗
肉桂油
脂肪酸蔗糖酯
浸泡
燻蒸
水苔介質
活蟲
藥害
Phalaenopsis seedlings
cinnamon oil
sucrose fatty acid ester
soak
fumigation
sphagnum moss
living pest
phytotoxicity
引用: 王清玲、余志儒、盧秋通、林鳳琪、石憲宗。2010。作物蟲害非農藥防治資材。行政院農業委員會農業試驗所。台中。台灣。 行政院農業委員會。2018。民國106年農業統計年報。 余志儒、陳炳輝。2009。三種植物油對二點葉蟎之致死效果。台灣農業研究58(2):136-145。 何美慶。2014。葉綠素螢光作為評估番石榴溫度逆境之指標。國立中興大學園藝學研究所碩士論文。台中。臺灣。 李嘉慧、李哖。1991。台灣蝴蝶蘭根和葉的型態與解剖的特性。中國園藝37:237-248。 社團法人台灣蘭花產銷發展協會。2018。淺談2017年台灣蘭花產業現況。台灣蘭訊31:4-11。 林思佑、陳香君、鍾仁賜、張耀乾。2013。株齡影響蝴蝶蘭對介質鹽度的耐受度。臺灣園藝59(1):1-13。 林忠逸、林瑞松。2004。蝴蝶蘭裸根及黑暗模擬貯運對植體葉片及根部之影響。興大園藝29(1):67-84。 胡盈盈。2005。蝴蝶蘭盆花暗處理及不同花序成熟度與施用1-Methylcyclopropene對植體生理之影響。國立中興大學園藝學研究所碩士論文。台中。臺灣。 徐善德、沈再木、邱永正、黃光亮、沈榮壽、莊畫婷、古森本、陳福旗、金石文、陳光堯、朱建鏞、蔡媦婷。2010。蝴蝶蘭產業優勢技術之開發。花卉研究團隊研究現況與展望研討會專刊。行政院農業委員會農業試驗所編印。pp.1-9。 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報21(1):1-15。 秦子媛。2009。化學藥劑處理對蝴蝶蘭Phalaenopsis I-Hsin Cream’KHM246’裸根苗貯運後品質之影響。國立中興大學園藝學研究所碩士論文。台中。臺灣。 莊畫婷、黃光亮、徐善德。2013。蝴蝶蘭雜交障礙克服。提升臺灣花卉國際競爭力研討會專刊。臺灣園藝學會編印。pp.1-20。 陳明吟、曾敏南。2014。植物源殺蟲劑在葉蟎防治上之應用。高雄區農業改良場研究彙報25(2):19-33。 陳怡如。2007a。台灣蝴蝶蘭產業發展之研究。國立臺灣大學商學研究所碩士論文。台北。臺灣。 陳湄禎。2012。煙燻水對台農二號番木瓜種子發芽、幼苗生長、抗真菌性病害及採收後果實品質的影響。國立中興大學園藝學研究所博士論文。台中。臺灣。 陳運造。2007b。殺蟲植物與植物性殺蟲劑。苗栗區農業專訊40:2-4。 陳福旗。2007c。熱帶蘭花生理學。睿煜出版社。屏東。臺灣。 陳福旗。2013。蘭花技術服務團及蝴蝶蘭改進歷程。提升臺灣花卉國際競爭力研討會專刊。臺灣園藝學會編印。pp.91-98。 陳瀅如。2001。礦物營養對蝴蝶蘭生育、組織礦物成分及抽梗時葉片品質之影響。國立臺灣大學園藝學研究所碩士論文。台北。臺灣。 曾德賜。2016。農藥藥理與應用-殺蟲劑。藝軒圖書出版社。台中。台灣。 黃肇家、黃慧穗、蔡金玉、姚秋嫻。2012。蝴蝶蘭長程海運技術研究之應用與改良。花卉研究團隊成果發表會專刊。行政院農業委員會農業試驗所編印。pp.9-23。 葉育哲。2010。蝴蝶蘭原生種簡介。花蓮區農業專訊71:5-11。 張上鎮、鄭森松、王升陽。2009。土肉桂飄香—葉子的神奇功效及應用。台灣林業35(1):116-122。 許聰耀。2016。蝴蝶蘭市場主流花品種之商業育種作法與方向。蝴蝶蘭育種與品種管理策略研討會專刊。行政院農業委員會農業試驗所編印。pp.11-12。 戴廷恩、張耿衡、謝廷芳。2012。生物可分解材料作為蝴蝶蘭栽培介質之可行性評估。臺灣農業研究61(3):250-257。 謝廷芳。2014。植物源保護製劑之研發趨勢。臺中區農業改良場特刊121:117-140。 謝廷芳、曾俊弼、戴廷恩。2016。蝴蝶蘭品種交易管理之策略與作法。蝴蝶蘭育種與品種管理策略研討會專刊。行政院農業委員會農業試驗所編印。pp.33-39。 簡維佐。2013。台灣蝴蝶蘭產業之發展。提升臺灣花卉國際競爭力研討會專刊。臺灣園藝學會編印。pp.99-110。 Amit, T. K. and A. Malik. 2010. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med. 10:1-11. Anderson, J. A. and J. R. Coats. 2012. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pest Biochem. Physiol. 102:124-128. Aremu, A. O., M. G. Kulkarni, M. W. Bairu, J. F. Finnie, and J. Van Staden. 2012. Growth stimulation effects of smoke-water and vermicompost leachate on greenhouse grown-tissue-cultured ‘williams’ bananas. Plant Growth Regul. 66:111-118. Athie, I. and K. Mills. 2005. Resistance to phosphine in stored-grain insect pests in Brazil. Brazilian J. Food Technol. 8:143-147. Attia, S., K. L. Grissa, A. C. Mailleux, G. Lognay, S. Heuskin, S. Mayoufi, and T. Hance. 2012. Effective concentrations of garlic distillate (allium sativum) for the control of Tetranychus urticae (Tetranychidae). J. Appl. Entomol. 136:302-312. Ayvaz, A., O. Sagdic, S. Karaborklu, and I. Ozturk. 2010. Insecticidal activity of the essential oils from different plants against three stored-product insects. J. Insect Sci. 10:21. Beckman, C. H. 2000. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant P. 57:101-110. Benelli, G., G. Flamini, A. Canale, P. L. Cioni, and B. Conti. 2012. Toxicity of some essential oil formulations against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera tephritidae). Crop Prot. 42:223-229. Blenau, W., E. Rademacher, and A. Baumann. 2011. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 43:334-347. Botelho, L. N. S., D. A. Rocha, M. A. Braga, A. Silva, and C. M. P. de Abreu. 2016. Quality of guava cv. ‘Pedro sato’ treated with cassava starch and cinnamon essential oil. Sci. Hort. 209:214-220. Buta, J. G., W. R. Lusby, J. W. Neal Jr, R. M. Waters, and G. W. Pittarelli. 1993. Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporariorum. Phytochemistry 32:859-864. Carvalho, R. L., M. F. Cabral, T. A. Germano, W. M. de Carvalho, I. M. Brasil, M. I. Gallão, C. F. H. Moura, M. M. A. Lopes, and M. R. A. de Miranda. 2016. Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biol. Technol. 113:29-39. Chortyk, O. T., J. G. Pomonis, and A. W. Johnson. 1996. Syntheses and characterizations of insecticidal sucrose esters. J. Ag. Food chem. 44:1551-1557. Cindi, M. D., P. Soundy, G. Romanazzi, and D. Sivakumar. 2016. Different defense responses and brown rot control in two Prunus persica cultivars to essential oil vapours after storage. Postharvest Biol. Technol. 119:9-17. Conti, B., A. Canale, A. Bertoli, F. Gozzini, and L. Pistelli. 2010. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 107:1455-1461. Demirevska-Kepova, K., R. Holzer, L. Simova-Stoilova, and U. Feller. 2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves. Biol. Plantarum 49:521-525. Desneux, N., A. Decourtye, and J. M. Delpuech. 2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81-106. Enan, E. 2001. Insecticidal activity of essential oils octopaminergic sites of action. Comp. Biochem. Physiol. Part C:325-337. Favero, B. T., E. Poimenopoulou, M. Himmelboe, T. Stergiou, R. Müller, and H. Lütken. 2016. Efficiency of 1-methylcyclopropene (1-MCP) treatment after ethylene exposure of mini-phalaenopsis. Sci. Hort. 211:53-59. Gao, M., L. Feng, and T. Jiang. 2014. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 149:107-113. Hou, J. Y., W. B. Miller, and Y. C. A. Chang. 2011. Effects of simulated dark shipping on the carbohydrate status and post-shipping performance of Phalaenopsis. J. Amer. Soc. Hort. Sci. 136(5):364-371. Hsu, B. D. 2007. On the possibility of using a Chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings. Plant Sci. 172:604-608. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of Chlorophyll-a and Chlorophyll-b in N,N-dimethylformamide and 80-percent acetone. Plant Physiol. 77:483-485. Jeyaratnam, N., A. H. Nour, R. Kanthasamy, A. H. Nour, A. R. Yuvaraj, and J. O. Akindoyo. 2016. Essential oil from cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Ind. Crop. Prod. 92:57-66. Jiang, H., J. Wang, L. Song, X. Cao, X. Yao, F. Tang, and Y. Yue. 2016. GcxGc-TOFMS analysis of essential oils composition from leaves, twigs and seeds of cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 21:423. Jing, H., X. Tan, J. Xu, G. Zhou, and G. Li. 2011. Cinnamaldehyde prolongs the vase life of cut rose through alleviating oxidative stress. Europ. J. Hort. Sci. 76:69-74. Joca, T. A. C., D. C. d. Oliveira, G. Zotz, U. Winkler, and A. S. F. P. Moreira. 2017. The velamen of epiphytic orchids: variation in structure and correlations with nutrient absorption. Flora 230:66-74. Kéïta, S., S. Umoetok, and J. Smith. 2006. The insecticidal activity of petroleum ether extract of Hyptis suaveolens Poit (Labiatae) seeds on Plutella xylostella (L.)(Lepidoptera: Yponomeutidae). Agr. J. 1:11-13. Kim, S. W., J. Kang, and I. K. Park. 2013. Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. J. Asia-Pac. Entomol. 16:443-448. Kim, S. W., H. R. Lee, M. J. Jang, C. S. Jung, and I. K. Park. 2016. Fumigant toxicity of lamiaceae plant essential oils and blends of their constituents against adult rice weevil Sitophilus oryzae. Molecules 21:361. Kobasiy, M., M. R. Tellez, C. L. Webber, F. E. Dayan, K. K. Schrader, and D. E. Wedge. 2001. Phytotoxic and fungitoxic activities of the essential oil of kenaf(Hibiscus cannabinus L.) leaves and its composition. J. Agric. Food Chem. 49:2768-3771. Kong, J., Y. F. Xie, Y. H. Guo, Y. L. Cheng, H. Qian, and W. R. Yao. 2016. Biocontrol of postharvest fungal decay of tomatoes with a combination of thymol and salicylic acid screening from 11 natural agents. LWT-Food Sci. and Technol. 72:215-222. Kordali, S., A. Cakir, H. Ozer, R. Cakmakci, M. Kesdek, and E. Mete. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technol. 99:8788-8795. Kouninki, H., L. Ngamo, T. Hance, and M. Ngassoum. 2007. Potential use of essential oils from local Cameroonian plants for the control of red flour weevil Tribolium castaneum (Herbst.)(Coleoptera:Tenebrionidae). African Journal of Food, Agriculture, Nutrition and Development 7:1-15. Lee, S., M. Buber, Q. Yang, R. Cerne, R. Cortes, D. Sprous, and R. Bryant. 2008. Thymol and related alkyl phenols activate the hTRPA1 channel. Brit. J. Pharmacolo. 153:1739-1749. Lee, S. Y. 2017. Vegetative growth characteristics of Phalaenopsis and Doritaenopsis plants under different artificial lighting sources. Korean J. Hort. Sci. 35:21-29. Li, S., Z. Song, Z. Liu, and S. Bai. 2008. Characterization and insecticidal activity of sucrose octanoates. Agron. Sustain. Dev. 28:239-245. Liu, T. X., P. A. Stansly, and O. Chortyk. 1996. Insecticidal activity of natural and synthetic sugar esters against Bemisia argentifolii (Homopetera: Aleyrodidae). J. Econ. Entomol. 89:1233-1239. Liu, X., G. He, and C. Yuan. 2001. Advance in research, production and application of sucrose ester. Food and Fermentation Industries 27:64-69. Liu, Y. B. 2011. Low-temperature phosphine fumigation of chilled lettuce under insulated cover for postharvest control of western flower thrips, Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 14:323-325. Martínez-Villar, E., F. J. Sáenz-De-Cabezón, F. Moreno-Grijalba, V. Marco, and I. Pérez-Moreno. 2005. Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 35:215-222. Mayworm, M. A. S., A. B. dos Santos, G. F. A. Melo-de-Pinna, A. Salatino, M. L. F. Salatino, and D. Demarco. 2017. Monoterpenes from the essential oil from Brazilian propolis affect seedling cellular elongation. Braz. J. Bot. 40:609-615. Moran, R. and D. Porath. 1980. Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol. 65:478-479. Ncama, K., L. S. Magwaza, A. Mditshwa, and S. Z. Tesfay. 2018. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: a review. Food Packaging and Shelf Life 16:157-167. Neal Jr, J., J. Buta, G. Pittarelli, W. Lusby, and J.-A. Bentz. 1994. Novel sucrose esters from Nicotiana gossei: effective biorationals against selected horticultural insect pests. J. Econ. Entomol. 87:1600-1607. Palou, L., A. Ali, E. Fallik, and G. Romanazzi. 2016. Gras, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 122:41-52. Park, C. G., M. Jang, K. A. Yoon, and J. Kim. 2016. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop. Prod. 89:507-513. Parnas, M., M. Peters, D. Dadon, S. Lev, I. Vertkin, I. Slutsky, and B. Minke. 2009. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300-309. Płażek, A., F. Dubert, P. Kopeć, M. Dziurka, A. Kalandyk, J. Pastuszak, and B. Wolko. 2018. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int. J. Mol. Sci. 19:992. Pumnuan, J. and A. Insung. 2012. Effectiveness of essential oils of medicinal plants against stored product mite, Suidasia pontifica Oudemans. Acta Hort. 945:79-85. Pumnuan, J., L. Khurnpoon, and A. Insung. 2015a. Changes of cut orchid quality after fumigation with clove and cinnamon essential oils. Acta Hort. 1079:521-525. Pumnuan, J., L. Khurnpoon, and A. Insung. 2015b. Effects of insecticidal essential oil fumigations on physiological changes in cut Dendrobium sonia orchid flower. Songklanakarin J. Sci. Technol. 37:523-531. Puterka, G. J., W. Farone, T. Palmer, and A. Barrington. 2003. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters. J. Econ. Entomol. 96:636-644. Puterka, G. J. and R. F. Severson. 1995. Activity of sugar esters isolated from leaf trichomes of Nicotiana gossei to pear psylla (Homoptera:Psyllidae). J. Econ. Entomol. 88:615-619. Rattan, R. S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29:913-920. Ray, H. A. and M. A. Hoy. 2014. Effects of reduced-risk insecticides on three orchid pests and two predacious natural enemies. Fla. Entomol. 97:972-978. Roy, A., D. Chakraborti, and S. Das. 2008. Effectiveness of garlic lectin on red spider mite of tea. J. Plant Interac. 3:157-162. Ryan, M. and O. Byrne. 1988. Plant-insectcoevolution and inhibition of acetylcholin-esterase. J. Chem. Ecol. 14:1965-1975. Salvia-Trujillo, L., M. A. Rojas-Graü, R. Soliva-Fortuny, and O. Martín-Belloso. 2015. Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut ‘Fuji’ apples. Postharvest Biol. Technol. 105:8-16. Sellamuthu, P. S., D. Sivakumar, P. Soundy, and L. Korsten. 2013. Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biol. Technol. 81:66-72. Seo, S. M., J. Kim, J. Kang, S. H. Koh, Y. J. Ahn, K. S. Kang, and I. K. Park. 2014. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic Biochem. Physiol. 113:55-61. Siegler, E. and C. Popenoe. 1925. The fatty acids as contact insecticides. J. Econ. Entomol. 18:292-299. Silva, S. M., K. Haddi, L. O. Viteri Jumbo, and E. E. Oliveira. 2017. Progeny of the maize weevil, Sitophilus zeamais, is affected by parental exposure to clove and cinnamon essential oils. Entomol. Exp. Appl. 163:220-228. Sivakumar, D. and S. Bautista-Baños. 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 64:27-37. Sánchez-González, L., M. Vargas, C. González-Martínez, A. Chiralt, and M. Cháfer. 2011. Use of essential oils in bioactive edible coatings: A review. Food Eng. Rev. 3:1-16. Su, V., B. D. Hsu, and W. H. Chen. 2001. The photosynthetic activities of bare rooted phalaenopsis during storage. Sci. Hort. 87:311-318. Thewes, F. R., A. Brackmann, R. de Oliveira Anese, V. Ludwig, E. E. Schultz, and M. R. P. Berghetti. 2018. 1-methylcyclopropene suppresses anaerobic metabolism in apples stored under dynamic controlled atmosphere monitored by respiratory quotient. Sci. Hort. 227:288-295. Thurston, R. and J. A. Webster. 1962. Toxicity of nicotian a gossei domin to Myzus persicae (Sulzer). Entomol. Exp. Appl. 5:233-238. Tong, F. and J. R. Coats. 2010. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 98:317-324. Viteri Jumbo, L. O., L. R. A. Faroni, E. E. Oliveira, M. A. Pimentel, and G. N. Silva. 2014. Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Ind. Crop. Prod. 56:27-34. Waliwitiya, R., P. Belton, R. A. Nicholson, and C. A. Lowenberger. 2010. Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata. Pest Mgt. Sci. 66:277-289. Wang, S. Y., P. F. Chen, and S. T. Chang. 2005. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technol. 96:813-818. Wang, Y. T. and Y. C. A. Chang. 2017. Effects of nitrogen and the various forms of nitrogen on phalaenopsis orchid-a review. Hort Technol. 27:144-149. Wang, Y., T. Shan, Y. Yuan, and T. Yue. 2016. Overall quality properties of kiwifruit treated by cinnamaldehyde and citral: microbial, antioxidant capacity during cold storage. J. Food Sci. 81:3043-3051. Wu, Y., X. Duan, G. Jing, Q. OuYang, and N. Tao. 2017. Cinnamaldehyde inhibits the mycelial growth of Geotrichum citri-aurantii and induces defense responses against sour rot in citrus fruit. Postharvest Biol. Technol. 129:23-28. Yen, W.-Y., Y.-C. A. Chang, and Y.-T. Wang. 2011. The acidification of sphagnum moss substrate during phalaenopsis cultivation. HortScience 46:1022-1026. Zhou, D., Z. Wang, M. Li, M. Xing, T. Xian, and K. Tu. 2018. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches. J. Appl. Microbiol. 124:166-178. Zotz, G. and U. Winkler. 2013. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733-741.
摘要: 本研究利用食品級肉桂油及食品添加物脂肪酸蔗糖酯作為非農藥資材,應用於控制輸澳蝴蝶蘭苗株水苔介質活蟲之可行性,期能建立安全、無汙染且能有效殺蟲之非農藥防治方法,提高檢疫合格率。 蝴蝶蘭苗以0.1%肉桂油浸泡處理5分鐘後可完全殺死活蟲,處理後14天藥害指數為4.00;以0.07%肉桂油浸泡3分鐘後,間隔24、48及72小時再以相同條件浸泡第2次可完全殺死活蟲,處理後14天藥害指數在3.25-3.75間。另外,以0.05-0.20%肉桂油噴施蝴蝶蘭苗葉片5次,每次間隔48小時,對於葉片不產生藥害,但亦無法顯著減少介質活蟲數量。而浸泡濃度高達1.00%的脂肪酸蔗糖酯溶液5分鐘,對於減少介質中活蟲沒有顯著效果,根部亦無藥害發生。 為達到殺蟲及減少藥害之目的,本研究測試燻蒸及複合處理之效果。肉桂油燻蒸為全株處理。蝴蝶蘭苗以濃度80 μL·L-1燻蒸8小時無法減少介質中活蟲數量,但也無藥害發生。提高濃度至1000 μL·L-1並延長燻蒸時間至12小時,亦無法減少介質中活蟲數量,但會導致根部發生藥害,處理後10天藥害指數為3.00。 複合處理部分,蝴蝶蘭苗以0.03%、0.02%、0.025%或0.017%肉桂油及1%脂肪酸蔗糖酯複合處理浸泡3分鐘,均能顯著減少介質活蟲數量,處理後14天藥害指數在1.33-1.50間。0.03%肉桂油、1%脂肪酸蔗糖酯及1%或2%煙燻水之複合處理浸泡3分鐘,亦能顯著減少介質活蟲數量,處理後7天藥害指數分別為2.25和2.75。0.10%肉桂油浸泡2分鐘後再浸泡去離子水3分鐘或以2 L去離子水淋洗,均有殺蟲效果且可降低藥害指數,其中0.10%肉桂油浸泡2分鐘後以2 L去離子水淋洗能有效減少介質活蟲數量,且藥害指數能控制在1以下,為最佳複合處理。 0.1%肉桂油浸泡處理2分鐘會誘導蝴蝶蘭苗根部的乙烯釋放率提高,約為對照組的2倍,若以1-MCP預先燻蒸48小時後再浸泡,雖可使乙烯釋放率降低約一半,但外觀上仍有嚴重藥害,顯示肉桂油處理會使根部受傷且誘導乙烯產生,但根部藥害之產生與乙烯並無直接關係。 綜合上述結果顯示,以0.10%肉桂油浸泡2分鐘後,淋洗去離子水2 L之複合處理可顯著減少介質活蟲數量,其結果與商業慣行方法接近,且藥害指數輕微(小於1),分析礦物元素、葉綠素含量及葉綠素螢光顯示,此複合處理並不會顯著影響植株生理狀況。因此,0.1%肉桂油浸泡2分鐘後以2 L去離子水淋洗處理應具有取代目前商業慣行施以化學農藥方法之潛力,可作為未來外銷蝴蝶蘭苗非農藥防治策略之參考,提升檢疫合格率。
In this study, food-grade cinnamon oil and sucrose esters of food additives are used as non-chemical pestcides to control living pests in the sphagnum moss of Phalaenopsis seedlings. We hope to establish a safe, pollution-free and insecticidal method of non-chemical pestcides to improve the pass rate of quarantine. Phalaenopsis seedlings treated with 0.1% cinnamon oil for 5 minutes could completely kill living pests and the phytotoxicity index is 4.00. After treated with 0.07% cinnamon oil for 3 minutes, the living pests were completely killed by treated with the same condition after 24, 48 and 72 hours and the phytotoxicity index was between 3.25-3.75 at 14 days after second treatment. In addition, the leaves of Phalaenopsis seedlings sprayed with 0.05-2.00% cinnamon oil for 5 times at intervals of 48 hours, which didn’t cause phytotoxicity to leaves, but could not reduce the number of living pests. Phalaenopsis seedlings treated with 1.00% sucrose fatty acid ester for 5 minutes had no significant effect on reduction of the number of living pests in sphagnum moss and would not lead to phytotoxicity to roots simultaneously. In order to achieve insecticidal and reduce phytotoxicity, effects of whole plant fumigation and composite treatments were tested in this study. Phalaenopsis seedlings fumigated with 80 μL·L-1 cinnamon oil for 8 hours could not reduce the number of living pests in sphagnum moss and would not contribute to phytotoxicity. Increasing the concentration to 1000 μL·L-1 and prolonging the fumigation time to 12 hours would not reduce the number of living pests in sphagnum moss, but it would bring about phytotoxicity to roots and the index was 3.00 at 10 days after treatment. In composite treatments, Phalaenopsis seedlings treated with 0.03%, 0.025%, 0.02% and 0.017% cinnamon oil with 1% sucrose fatty acid ester for 3 minutes could reduce the number of living pests in sphagnum moss and the phytotoxicity index was between 1.33-1.50 at 14 days after treatment. Phalaenopsis seedlings treated with 0.03% cinnamon oil, 1% sucrose fatty acid ester and 1% or 2% smoke-water composite treatments for 3 minutes also reduced the number of living pests in sphagnum moss and the phytotoxicity index was 2.25 and 2.75 at 7 days after treatments, respectively. After treated with 0.1% cinnamon oil, Phalaenopsis seedlings soaked in deionized water for 3 minutes or treated with 2 L deionized water, the insecticidal effect would be achieved and could reduce the phytotoxicity. Among them, Phalaenopsis seedlings treated with 0.1% cinnamon oil and then watering with 2 L deionized water could reduce the number of living pests significantly and the phytotoxicity index could be controlled to below 1, which was the best one of composite treatments. The ethylene production rate that was 2 times higher than control would be induce after the roots of Phalaenopsis seedlings treated with 0.1% cinnamon oil for 2 minutes. If fumigated with 1-MCP for 48 hours before treatment, the ethylene production rate would decrease by about half. However, there was still a serious phytotoxicity on the appearance. This result indicated that treated with cinnamon oil would casue root injury and induce ethylene production, while there is no direct connection between them. In summary, the number of living pests in sphagnum moss would be reduce significantly by treated with 0.1% cinnamon oil and 2 L deionized water, which insecticidal effect was similar to commercial treatment and phytotoxicity was slight(below 1) . Analysis of mineral elements, Chlorophyll content and Chlorophyll fluorescence showed that this composite treatment would not interfere the physiological status of Phalaenopsis seedlings. Therefore, this composite treatment should have potential to replace the current method of applying chemical pesticides and it can be used as a reference of non-chemical control strategy for Phalaenopsis seedlings for export to improve the pass rate of quarantine in the future.
URI: http://hdl.handle.net/11455/95718
文章公開時間: 2021-07-31
顯示於類別:園藝學系

文件中的檔案:
檔案 大小格式 
nchu-107-7105032116-1.pdf3.08 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。