請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95721
標題: 鳳梨雜交與甲基磺酸乙酯誘變之研究
Studies on Hybridization and Ethyl Methanesulfonate Induced Mutation in Pineapple
作者: 林佳慧
Jai-Hui Lin
關鍵字: 鳳梨
葉緣刺
雜交親和性
Ananas comosus
leaf spininess
cross incompatibility
引用: 李樹賢。2008。植物染色體與遺傳育種。科學出版社。 呂明雄、林芳存、范國慶、官青杉、徐信次。2001。台灣鳳梨產業差異化競爭力-產區、品種、季節之果實品質研究。台灣鳳梨品種改良與病蟲害管理研討會專刊。農業試驗所嘉義試驗分所。台灣:嘉義。p.59-67。 官青杉。2011。鳳梨裁培管理手冊-鳳梨栽培品種佈局。農業試驗所特刊160:3-8。 官青杉、唐佳惠。2009。台灣品牌-精緻農業中鳳梨育種的傳統與創新。生物科技產學論壇。p.36-38。 官青杉、蔡惠文、唐佳惠。2013。台灣鳳梨育種與未來展望。臺灣果樹育種研討會專刊。國立屏東科技大學農園系出版。台灣:屏東。p.49-54。 官青杉、蔡惠文、唐佳惠。2012。鳳梨品種台農22號‘蜜香’之介紹。農業試驗所技術服務 92: 6-9。 林榮貴。2003。鳳梨果實形質及遺傳相關之研究。國立中興大學園藝學系博士論文。pp. 140 林榮貴。2004。鳳梨新品種台農20號(牛奶鳳梨)之介紹。農業試驗所技術服務 60: 20-22。 林學詩、蔡月夏。2005。結合組織培養與放射線照射誘導鳳梨變異之研究。中國園藝 51: 241-248。 高典林。1996。現代作物育種學。藝軒發行。 唐佳惠、蔡孟勳、蔡惠文、官青杉。2014。鳳梨「台農21 號(黃金)」之育成。台灣農業研究 63: 167-177。 陳昀皓、陳京城。2011。鳳梨 EMS 誘變及 RAPD 分子標誌分析。植物種苗 13: 37-51。 陳姿翰。2013。誘導突變在作物育種上之利用。台中區農業改良場101年專題討論專集。行政院農業委員會台中區農業改良場編印。p.225-229。 陳美齡。2010。鳳梨果實發育期間理化性狀、礦物元素及水浸狀生理裂變之研究。國立中興大學園藝學系碩士論文。台中。 陳瑀芳。2014。鳳梨葉緣刺遺傳與台農4號鳳梨誘變育種之研究。國立中興大學園藝學系碩士論文。台中。 程永雄、黃子彬、徐信次、鄭清煥、呂明雄。2002。農業推廣教材:鳳梨栽培管理技術。農業試驗嘉義分所編印。 黄俊生、孔德春、黄峰。1995。EMS誘變鳳梨愈傷組織選擇抗性突變體的研究。熱帶作物學報16: 1-6。 張清勤。1991。鳳梨台農四號外銷果實採收成熟度之研究。中華農業研究40: 37-44. 張清勤。1995。「台農13號」鳳梨。中華農業研究 44: 287-296. 張清勤、官青杉。2001。鳳梨品種改良回顧及未來展望。台灣鳳梨品種改良與病蟲害管理研討會專刊。行政院農業委員會農業試驗所特刊第97號。pp. 1-14. 蘇宗宏。2001。台灣鳳梨蟲害及其防治。台灣鳳梨品種改良與病蟲害管理研討會專刊。農業試驗所嘉義分所編印。台灣:嘉義。p.31-36。 蔡精強、黃碧海。2001。鳳梨產銷改進與發展。台灣鳳梨品種改良與病蟲害管理研討會專刊。農業試驗所嘉義分所編印。台灣:嘉義。p.21-30。 郭豔、楊海玲。2009。植物組織培養中的褐化現象及解決途徑。山西農業科學 37: 14-16. 農業統計年報。2016。行政院農業委員會。 Al-Qurainy, F. and S. Khan. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Applied Sciences Journal 6:1589-1601. Botella, J. R. and M. Smith.2008. Genomics of pineapple, crowning the king of tropical fruits, pp. 441-451. In: P.H. Moore and R. Ming (eds.). Genomics of Tropical Crop Plants. Brewbaker, J. L. and D. D. Gorrez. 1967. Genetics of self-incompatibility in the monocot genera, Ananas (pineapple) and Gasteria. American Journal of Botany 54: 611–616. Cabot, C. 1986. Practice of pineapple breeding. Acta Horticulturae 196: 25-36. Cabral, J.R.S., A.P. de Matos and G. Coppens d''Eeckenbrugge. 1997. Segregation for resistance to fusariose, leaf margin type, and leaf colour from the EMBRAPA pineapple hybridization programme. Acta Horticulturae 425: 193-200. Cabral, J.R.S., G. Coppens d''Eeckenbrugge and A.P de Matos. 2000. Introduction of selfing in pineapple breeding. Acta Horticulturae 529: 165-168. Cabral, J. R. S., A. D. S. Souza, A. P. D. Matos and R. C. Caldas. 2003. Effects of self pollination in pineapple cultivars. Revista Brasileira de Fruticultura, 25: 184-185. Chan, Y. K. 1989. F1 variation from hybridization of two ‘Spanish’ pineapple cultivars. MARDI Research Journal 17: 172-177. Carlier, J. D., G. C. d’Eeckenbrugge and J. M. Leitão. 2007. Pineapple. pp. 331-342. In: C. Kile (ed.). Genome mapping and molecular breeding in plants, vol. 4. Fruits and nuts. Springer-Verlag, Berlin. Collins, J. L. and K. R. Kerns. 1938. Mutations in the pineapple: a study of thirty inherited abnormalities in the cayenne variety. Journal of Heredity 29: 162-172. Collins, J. L. and K. R. Kerns. 1946. Inheritance of three leaf types in the pineapple. Journal of Heredity 37: 123-128. Collins, J. L. 1960. The pineapple: Botany, cultivation, and utilization. Leonard Hill Ltd., London. pp.294. Coppens d’Eeckenbrugge, G. and F. Leal. 2002. Morphology, anatomy and taxonomy. pp. 13-32. In: Bartholomew, D. P., R. E. Paull and K. G. Rohrbach (eds.).The pineapple: botany, production, and uses. CABI Publishing, New York, U.S.A. Coppens d’Eeckenbrugge, G. and G. Sanewski. 2011. Leaf margin in pineapple. Pineapple News 18: 32-37. Coppens d''Eeckenbrugge, G., B. Bernasconi, B. Messiaen and M. F Duval. 1995. Using incompatibility alleles as genetic markers to identify pineapple varieties. Acta Horticulturae 425: 161-170. Coppens d’Eeckenbrugge, G., G. M. Sanewski, M. K. Smith, M. F. Duval and F. Leal. 2011. Ananas, p.21-41. In: C. Kole (ed). Wild crop relatives: genomic and breeding resources. Tropical and subtropical fruits. Springer-Verlag, Berlin. FAOSTAT, 2014:http://www.fao.org/faostat/zh/#data Gomori, G. 1955. [16] Preparation of buffers for use in enzyme studies. Methods in enzymology, 1: 138-146. Ibrahim, R., A. Hamzah, Z. J. Jam, M. Bahagia and M. Joyo. 2009. Gamma irradiation-induced mutation for the improvement of josapine pineapple against bacterial heart rot disease and improved fruit quality. International Atomic Energy Agency, Vienna, 276-278. Lokko, Y. and H. Amoatey. 2001. Improvement of pineapple using in vitro and mutation breeding techniques. In: In vitro techniques for selection of radiation induced mutations adapted to adverse environmental conditions, IAEA, Vienna. pp. 25-29. Lapade, A. G., A. M. S. Veluz and I. S. Santos. 1995. Genetic improvement of the queen varity of pineapple though induced mutation and in vitro culture techniques. pp. 684-687. In: Proceedings, Induced mutations and Molecular techniques for crop improvement. Internl Symposium, IAEA and Food Agriculure Organization of the Unitited Nations, IAEA, Vienna. Mhatre, M. and P. S. Rao. 2002. Influence of physical and chemical mutagens on pineapple shoot cultures. Pineapple News 9: 10-11. Osei-Kofi, F., H. M. Amoatey and Y Lokko. 1996. Improvement of pineapple (Ananas comosus (L.) Merr.) using biotechnology and mutation breeding techniques. pp. 23-27. In Proc. IAEA/FAO International Symposium on In vitro techniques for selection of radiation induced mutants adapted to adverse environmental conditions. IAEA, Vienna. Penna, S., S. B. Vitthal and P. V. Yadav. 2012. In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremediation, Biodiversity, Bioavailability 6: 6-14. Pérez, G., E. Yanez, A. Mbogholi, B. Valle, F. Sagarra, L. Yabor, C. Aragón, J. González, M. Isidrón and J. C. Lorenzo. 2012. New pineapple somaclonal variants: P3R5 and Dwarf. American Journal of Plant Sciences 3: 1-11. Usberti Filho, J. A., W. J. Siqueira, A. Spironello, M. Harris, amd A. C. C. Badan. 1995. Inheritance of leaf spininess and segregation of leaf color in pineapple (Ananas comosus L. Merrill). Brazilian Journal of Genetics 18: 547-552. Sanewski, G. M. 2009. The effect of different levels of inbreeding on self-incompatibility and inbreeding depression in pineapple. Acta Horticulturae 822 :63-70. Sega, G. A. 1984. A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology 134: 113-142. Scherer, R. F., D. Olkoski, F. V. D. Souza, R. O. Nodari and M. P. Guerra. 2015. Gigante de Tarauacá: a triploid pineapple from Brazilian Amazonia. Scientia Horticulturae 181: 1-3. Wee, Y.C and A. N. Rao. 1979. The Masmerah: A new cultivar for the Malaysian pineapple industry. World Crops 26: 64-7. Williams, D.D.F. and H. Fleisch. 1993. Historical review of pineapple breeding in Hawaii. Acta Horticulturae 334: 67-76.
摘要: 本研究調查鳳梨雜交後代葉緣刺分離之情形,以推論葉緣刺遺傳理論及台灣各重要品種之葉緣刺基因型。另測試不同鳳梨品種及雜交後代之花粉體外(in vitro)萌芽情形,以及不同雜交組合之花粉體內(in vivo)萌發之情形,以探討鳳梨雜交親和性問題。此外,以甲基磺酸乙酯(EMS)作為誘變劑探討不同處理時間、培植體切割後之恢復時間以及EMS溶液pH值對‘台農4號’(釋迦)鳳梨芽球存活率、鮮重增加率以及再生植株數量之影響。 本研究大多數雜交試驗結果皆支持Collins與Kerns (1946)提出之葉緣刺遺傳假說,但其中‘MD-2’ × ‘台農20號’以及‘TN1320 (SW)’ × ‘TN1320 (SL)’ 2雜交組合全緣有刺比率偏高,並不完全符合上述之假說,導致此現象的可能原因為受環境影響而S基因外顯率降低,使得全緣有刺比例略微提高,加上異質結合ppSs基因易產生突變,使得表現度不一,不能穩定表現尖端有刺外表型。研究結果支持鳳梨白邊型(piping)全緣無刺之性狀表現受顯性P基因控制,且P基因對S基因具有上位性,而顯性S基因控制尖端有刺的表現型,隱性s基因控制全緣有刺的表現型。全緣有刺之‘台農4號’鳳梨基因型為ppss,部分有刺之‘台農11號’(香水)、‘台農13號’(冬蜜)、‘Tropical Gold’、‘紅皮種’以及尖端有刺之‘MD-2’基因型皆為ppSs,白邊型(piping)全緣無刺之‘台農20號’(牛奶)基因型為Ppss。 花粉離體培養結果顯示大多數鳳梨品種及品系的花粉長徑約為55~60 µm,而‘Tropical Gold’及‘TN0420 (SL) 1-2’ 花粉長徑顯著高於其他品種及品系,分別為64.9 µm及75.9 µm。‘台農4號’花粉萌芽率最低(8.1%)、異常花粉比率最高(79.8%),且花柱內花粉管生長受阻,僅有少數花粉管得以抵達花柱末端。依據單花平均結子數量及體內花粉管螢光染色之結果,鳳梨授粉之親和性由高至低為雜交、回交、同親後代雜交(sibcross)及自交。此外,所有自交組合之in vivo花粉管生長被侷限於柱頭之上,同親後代雜交(sibcross)亦有部分組合之in vivo花粉管生長被侷限於柱頭之上或在花柱中段。然而雜交組合之in vivo花粉管皆可順利生長至花柱末端。 在EMS誘變試驗中,隨著EMS處理時間增加,‘台農4號’鳳梨芽球存活率、鮮重增加率以及植株再生率皆下降。而切割培植體後進行切口修復培養以及調整EMS溶液pH值至6則有助於提高芽球誘變存活率、鮮重增加率以及植株再生數量。
The objective of this study was to examine the inheritance hypothesis of leaf spininess and the genotypes of important pineapple cultitivars in Taiwan. For evaluating self-incompatibility and fertility among different cross combinations of pineapple, the growth of pollen tube in vivo and the percentage of pollen germination and abnormal pollen in vitro were tested in different cultivars and hybrid progenies. Using ethyl methanesulfonate (EMS) as a mutagen, the effect of treatment duration, recovery culture after cutting and EMS solution pH on the surivival rate, increasing rate of freash weight and multiplication number of ‘Tainung No. 4’ bud cluster were also investigated. Most of cross combination segregation for leaf spininess type examined in this study supported the hypothesis of Collins and Kerns (1946) except combinations of ‘MD-2’ × ‘Tainung No. 20’ and ‘TN1320 (SW)’ × ‘TN1320 (SL)’, which had higher ratios of whole leaf spiny and not perfectly fit the above hypothesis. This can be due to incomplete penetrance and mutation of S allele caused by environment so the expression of spiny tip is not stable. The results suggest that spinless (piping) is controlled by dominant P gene, with epistatic effect on the S gene. Spiny tip is controlled by dominant S gene and whole leaf spiny is controlled by recessive s gene. Spiny ‘Tainung No. 4’ genotype is ppss. Partially spiny ‘Tainung No. 11’, ‘Tainung No. 13’, ‘Tropical Gold’, ‘RS’ and spiny tip ‘MD-2’ genotypes are ppSs. Spineless piping ‘Tainung No. 20’ genotype is Ppss. The pollen sizes of most pineapple cultivars and clones were ca. 55~60 μm in length. However, the pollen sizes of ‘Tropical Gold’ and ‘TN0420 (SL) 1-2’ were significantly higher, reaching 64.9 and75.9 μm, respectively. ‘Tainung No. 4’ had the lowest pollen germination rate (8.1%), highest abnormal pollen rate (79.8%) and only few pollen tubes can reach the style end. Growths of pollen tubes of selfing combinations were inhibited and stayed on the stigmata and some sibcross combinations were also inhibited and stayed on the stigmata or only reached the middle part of the style. However, pollen tubes of all hybrid combinations grew along the style to the end. In EMS treatments, survival rate, increasing rate of fresh weight and multiplication rate of ‘Tainung No. 4’ bud cluster were decresed with increased duration of EMS treatment, but were improved by recovery culture after cutting and by adujusting the pH value of EMS solution to 6.0.
URI: http://hdl.handle.net/11455/95721
文章公開時間: 2020-08-28
顯示於類別:園藝學系

文件中的檔案:
檔案 大小格式 
nchu-106-7103032024-1.pdf6.5 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。