請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95722
標題: 光皮洋香瓜以越瓜或南瓜為砧木之嫁接方式及嫁接植株生育之研究
Study of grafting methods and growth of melon ‘Honey World’ grafted onto oriental pickling melon or squash
作者: 張倚瓏
Yi-Lung Chang
關鍵字: 洋香瓜
嫁接方法
砧木
grafting
melon
rootstocks
引用: 王昶童。2014。低溫脅迫下嫁接黃瓜耐低溫性雙向電泳分析。鄭州大學碩士論文。70pp。 王毓華、黃晉興、余志儒。洋香瓜栽培管理。2009。興大農業 71: 16-23。 王毓華、黃晉興、鄧汀欽、吳錫家。2011。瓜類蔬菜品種改良與栽培技術改進之研究-以甜瓜育種及栽培技術研發為例。農業生技產業季刊 25:38-45。 王群、金嘉豐、趙豔、王冬。2014。不同嫁接方法對薄皮甜瓜生長的影響。長江蔬菜8: 49-51。 朱士農、郭世榮。2009。嫁接對鹽脅迫下西瓜植株體Na+和K+含量及其分佈的影響。園藝學報 6: 814-820。 行政院農業委員會。2014。農業年報103年版。農業統計年報。台北。 何冠琳、許博行。2001。二氧化碳濃度與溫度對樟樹苗木之形質生長參數與葉綠素螢光反應之影響。林業研究季刊23: 1-20。 呂衛光、張春蘭、袁飛、彭宇。2000。嫁接減輕設施黃瓜連作障礙機制初探。華北農學報 15: 153-156。 李雪利、李正、李彥濤、張文平、曾憲立、鄭文冉、劉國順、葉協鋒.。2009。 植物化感作用研究進展。中國農學通報 25: 142-146。 卓俊銘。2001。苦瓜嫁接絲瓜根砧耐淹水機制之研究。國立中興大學園藝學研究所博士論文。184pp。 周肇基。2000。幾種重要辭書“嫁棗”,“嫁接”條目詮釋之商榷。中國農史 19: 88-92。 林娟、殷全玉、楊丙釗、楊鐵釗、楊志曉。2007。植物化感作用研究進展。中國農學通報 23: 68-72。 林祥智。2014。光皮洋香瓜直立式栽培養液,整枝及連作障礙之研究。國立中興大學園藝學研究所碩士論文。80pp。 林益昇、蘇俊峰。2010。洋香瓜黑點根腐病的發生與嫁接防治。近年來我國重大作物病害之發生及其診斷,監測與防治研討會專刊: 2010: 165-191。 施驊倫。2007。嫁接絲瓜與南瓜砧木對''碧華''與''粉青''苦瓜植株生長與營養生理之研究。國立中興大學園藝學研究所碩士論文。92pp。 柳唐鏡、鄭秀國、李勁松、汪李平、陳冠銘、韓曉燕、俱龍。2009。淹水對紅籽瓜嫁接苗生長和根系生理生化的影響。長江蔬菜 4: 18-21。 郁宗雄。1988。瓜類育苗問題。園藝種苗產銷技術研討會專。p.176-178。 徐勝利、陳青雲、陳小青、李紹華、高疆生。2004。酚酸類物質對嫁接伽師瓜植株生長及保護酶活性的影響。果樹學報 21: 451-455。 徐勝利、陳青雲、陳小青、高疆生。2005。酚酸類物質對嫁接哈密瓜植株生長及保護酶活性的影響。西北農林科技大學學報 33: 66-70。 張小紅、趙依傑、林強、林航、陳貽釗。2012。不同砧木嫁接對甜瓜生理和品質的影響。農學學報 2: 32-35。 張紅梅、丁明、姜武、段青青、唐東梅、黃丹楓。2012。不同苗齡接穗西瓜嫁接體癒合的組織細胞學研究。園藝學報 39: 493-500。 張曼、羊杏平、徐錦華、劉廣、姚協豐、李蘋芳。2013。嫁接西瓜對西瓜枯萎病菌侵染的防禦機制研究。西北植物學報 33: 1605-1611。 張雲起、劉世琦、楊鳳娟、李東方。2003。耐鹽西瓜砧木篩選及其耐鹽機理的研究。西北農業學報 12: 105-108。 許博行、張安璟。2001。二氧化碳濃度與溫度對樟樹苗木生長及光合作用之影響。台灣林業科學16: 11-23。 陳玉雯。2001。芹菜連作障礙之研究。國立中興大學園藝學研究所碩士論文。136pp。 陳紹莉、周寶利、藺姍姍、李夏、葉雪凌。2010。肉桂酸和香草醛對嫁接茄子根系生長及生理特性的影響。應用生態學報 6: 1446-1452。 陳陽、林永勝、周先治、張玉燦。2015。不同砧木嫁接對番茄產量,品質及抗病性影響的研究。福建農業學報30: 483-488。 黃智賢。2003。‘福芳’與‘銘星’甜椒嫁接技術及嫁接植株生育之研究。國立中興大學園藝學研究所碩士論文。68pp。 黃圓滿。1999a。蔬菜作物的嫁接技術。台南區農業專訊30: 9-14。 黃圓滿。1999b。洋香瓜嫁接方式及種苗性狀探討。蔬菜作物試驗研究彙9: 59-63。 黃圓滿。2004。設施洋香瓜直立式栽培技術。臺南區農業專訊 50: 5-7。 黃圓滿。2014。蔬果嫁接。科技發展 496: 14-19。 黃興學、周國林、朱進、王斌才、林處發。2012。不同砧木和嫁接方式對嫁接苦瓜植株生長的影響。長江蔬菜 6: 31-32。 葉林、劉雅麗、郝文魁、劉玉山、唐淵。2014。不同嫁接方法對溫室黃瓜幼苗質量的影響。北方園藝 16: 41-43。 詹朝清、陳吉村。2003。設施蔬菜栽培施肥改進試驗。花蓮區農業改良場研究彙報 21: 71-79。 趙秀淓。2014。小胡瓜嫁接越瓜~根砧的另一種選擇。臺南區農業專訊 88: 1-3。 趙依傑、吳宇芬、張小紅、陳晟、陳陽。2011。越瓜型砧木對甜瓜的生長,產量及品質的影響。園藝學報 38: 2608-2608。 劉國聖。2007。彩色甜椒嫁接方式與嫁接植株生育之情形。國立中興大學園藝學研究所碩士論文。52pp。 劉慧英、朱祝軍、呂國華。2004。低溫脅迫對嫁接西瓜耐冷性和活性氧清除系統的影響。應用生態學報 15: 659-662。 蔡竹固、童伯開、陳瑞祥。1999。甜瓜病害的診斷及其防治。國立嘉義技術學院農業推廣委員會。20pp。 蔣永正。2011。植物對環境逆境之調控與應用。農正與農情 231: 78-85。 鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊。2009。洋香瓜安全生產管理。臺南區農業改良場技術專刊 137: 1-25。 戴振洋、李文汕。2009。高品質東方甜瓜栽培技術。興大農業第71期瓜果類蔬菜栽培專輯。p.24-28。 戴振洋、蔡宜峰。2012。適合有機甜瓜栽培之有機介質及有機液肥之研究。臺中區農業改良場研究彙報 114: 67-76。 戴順發、黃祥益、林正宏、曾夢蛟、張武男。2004。茄子砧木嫁接番椒之親和性研究。高雄區農業改良場研究彙報 15: 13-24。 戴順發、黃祥益、林正宏、曾夢蛟、張武男。2005。茄子砧木嫁接番茄植株生育之研究。高雄區農業改良場研究彙報 16: 41-57。 戴順發。2003。茄科蔬菜嫁接親和性及植株生育之研究。國立中興大學園藝學研究所博士論文。207pp。 薛佑光、林正雄。2005。種苗大小對瓜類機械嫁接苗成活之影響。植物種苗 7: 35-46。 魏宏賀、高崇娟。2006。低溫脅迫對甜瓜嫁接苗抗逆生理指標的研究。北方園藝 1: 23-24。 Aloni, B., L. Karni, G. Deveturero, Z. Levin, R. Cohen, N. Kazir, M. Lotan-Pompan, M. Edelstein, H. Aktas, E. Turhan, D. M. Joel, C. Horev, and Y. Kapulnic. 2008. Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. J. Hort. Sci. Biotechnol. 83: 777-783. Aloni, B., R. Cohen, L. Karni, H. Aktas, and M. Edelstein. 2010. Hormonal signaling in rootstock–scion interactions. Sci. Hort. 127: 119-126. Asahina, M., H. Iwai, A. Kikuchi, S. Yamaguchi, Y. Kamiya, H. Kamada, and S. Satoh. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol. 129: 201-210. Asao, T., H. Kitazawa, K. Tomita, K. Suyama, H. Yamamoto, T. Hosoki, and M. H. R. Pramanik. 2004. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Sci. Hort. 99: 207-214. AVRDC. 2003. Guide Grafting tomatoes for production in the hot-wet season. Asian Vegetable Research and Development Center, Publ. No 03-551, Shanhua, Tainan, Taiwan, 6pp. AVRDC. 2009. Guide Grafting sweet peppers for production in the hot-wet season. Asian Vegetable Research and Development Center, Publ. No 09-722, Shanhua, Tainan, Taiwan, 8pp. Bletsos, F. A. 2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. J. Phytopathol. 153: 155-161. Calatayud, Á., A. San Bautista, B. Pascual, J. V. Maroto, and S. López-Galarza. 2013. Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Sci. Hort. 149: 13-18. Colla, G., C. M. C. Suárez, M. Cardarelli, and Y. Rouphael. 2010. Improving nitrogen use efficiency in melon by grafting. Sci. Hort. 45: 559-565. Colla, G., Y. Rouphael, M. Cardarelli, A. Salerno, and E. Rea. 2010. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot. 68: 283-291. Condurso, C., A. Verzera, G. Dima, G. Tripodi, P. Crinò, A. Paratore, and D. Romano. 2012. Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Sci. Hort. 148: 9-16. Crinò, P., C. L. Bianco, Y. Rouphael, G. Colla, F. Saccardo, and A. Paratore. 2007. Evaluation of rootstock resistance to fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ melon. HortScience 42: 521-525. Davis, A. R., P. Perkins-Veazie, Y. Sakata, S. López-Galarza, J. V. Maroto, S. G. Lee, Y. C. Huh, Z. Sun, A. Miguel, S. R. King, R. Cohen, and J. M. Lee. 2000. Cucurbit grafting. Crit. Rev. Plant Sci. 27: 50-74. Edelstein, M., Y. Burger, C. Horev, A. Porat, A. Meir, and R. Cohen. 2004. Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigour, survival and yield of grafted melons. J. Hort. Sci. Biotech. 79: 370-374. Gao, P., W. Xing, S. Li, S. Shu, H. Li, N. Li, Q. Shao, and S. Guo. 2015. Effect of pumpkin rootstock on antioxidant enzyme activities and photosynthetic fluorescence characteristics of cucumber under Ca(No3)2 stress. Acta Hort. 1086: 177-187. Hao, Z. P., Q. Wang, P. Christie, and X. L. Li. 2007. Allelopathic potential of watermelon tissues and root exudates. Sci. Hort. 112: 315-320. Hartmann, H. T., D. E. Kester, F. T. Davies, and R. L. Geneve. 2002. Plant Propagation. Principles and Practices, seventh ed. Prentice Hall, Upper Saddle River, NJ, ISBN 0-13-679235-9, pp849. Herman, R., and R. Perl-Treves. 2007. Characterization and inheritance of a new source of resistance to Fusarium oxysporum f. sp. melonis race 1.2 in Cucumis melo. Plant Dis. 91: 1180-1186. Huang, Y., Q. S. Kong, F. Chen, and Z. L. Bie. 2014. The history, current status and future prospects of vegetable grafting in China. ISHS Acta Hortic. 1086: 31-39. Kato, C., N. Ohshima, H. Kamada, and S. Satoh. 2001. Enhancement of the inhibitory activity for greening in xylem sap of squash root with waterlogging. Plant Physiol. Biochem. 39: 513-519. King, S. R., A. R. Davis, X. Zhang, and K. Crosby. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hort. 127: 106-111. Kitazawa, H., T. Asao, T. Ban, M. H. R. Pramanik, and T. Hosoki. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. J. Hort. Sci. Biotechnol. 80: 677-680. Krall, L. P. and G. E. Edwards. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plantarum 86:180-187. Lin, K. H., W. S. Kuo, C. M. Chiang, T. C. Hsiung, M. C. Chiang, and H. F. Lo. 2013. Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses. Sci. Hort. 162: 333-340. Ling, N., W. Zhang, D. Wang, J. Mao, Q. Huang, S. Guo, and Q. Shen. 2013. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8: e63383. Liu, L., L. Duan, J. Zhang, Z. Zhang, G. Mi, and H. Ren. 2010. Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci. Hort. 124: 29-33. Liu, Y. F., H. Y. Qi, C. M. Bai, M. F. Qi, C. Q. Xu, J. H. Hao, Y. Li, and T. L. Li. 2011. Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon. Int. J. Biol. Sci. 7: 1161-1170. Miguel, A., J. V. Maroto, A. S. Bautista, C. Baixauli, V. Cebolla, B. Pascual, S. Lopez-Galarza, and J. L. Guardiola. 2004. The grafting of triploid watermelon is an advantageous alternative to soil fumigation. Sci. Hort.103: 9-17. Ntatsi, G., D. Savvas, H. P. Kläring, and D. Schwarz. 2014. Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. J. Am. Soc. Hort. Sci. 139: 230-243. Oda, M., K. Tsuji, and H. Sasaki. 1993. Effect of hypocotyl morphology on survival rate and growth of cucumber seedlings grafted on Cucurbita spp. Jap. Agr. Res. Q. 26: 259-259. Oda, M., M. Maruyama, and G. Mori. 2005. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. J. Jap. Soc. Hort. Sci. 74: 458-463. Omid, A., T. Keilin, A. Glass, D. Leshkowitz, and S. Wolf. 2007. Characterization of phloem-sap transcription profile in melon plants. J. Exp. Bot. 58: 3645-3656. Přikryl, Z., and V. Vančura. 1980. Root exudates of plants. Plant Soil 57: 69-83. Qiao, Y. X., Y. P. Zhang, H. X. Zhang, Y. Q. Tian, and L. H. Gao. 2013. Developmental characteristics and cinnamic acid resistance of root border cells in cucumber and figleaf gourd seedlings. J. Integr. Agr.12: 2065-2073. Ruiz, J. M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Sci. Hort. 81: 113-123. Sakata, Y., M. Sugiyama, T. Ohara, and M. Morishita. 2006. Influence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun and N. Shishkoff). J. Jpn. Soc. Hort. Sci. 75: 135-140. Sakata, Y., T. Ohara, and M. Sugiyama. 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hortic. 731: 159-170. Schwarz, D., Y. Rouphael, G. Colla, and J. H. Venema. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hort. 127: 162-171. Sorce, C., Massai, R., Picciarelli, P., and Lorenzi, R. 2002. Hormonal relationships in xylem sap of grafted and ungrafted Prunus rootstocks. Sci. Hort. 93: 333-342. Traka-Mavrona, E., M. Koutsika-Sotiriou, and T. Pritsa. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hort. 83: 353-362. Verzera, A., G. Dima, G. Tripodi, C. Condurso, P. Crinò, D. Romano, A. Mazzagliac, C. M. Lanzac, C. Restuccia, and A. Paratore. 2014. Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Sci. Hort. 169:118-124. Xu, Q., S. R. Guo , H. Li, N. S. Du, S. Shu, and J. Sun. 2015. Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings. J. Am. Soc. Hortic. Sci. 140: 299-307. Yang, Y., L. Wang, J. Tian, J. Li, J. Sun, L. He, S. Guo, and T. Tezuka. 2012. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings. Plant Physiol. Bioch. 58: 54-65. Yetisir, H. and N. Sari. 2003. Effect of different rootstock on plant growth, yield and quality of watermelon. Anim. Prod. Sci. 43: 1269-1274. Yetisir, H. and N. Sari. 2004. Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For. 28: 231-237. Yu, J. Q. and Y. Matsui. 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23: 817-827. Zhou, Y., L. Huang, Y. Zhang, K. Shi, J. Yu, and S. Nogués. 2007. Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Ann. Bot. 100: 839-848.
摘要: ‘蜜世界’洋香瓜做嫁接栽培,以生產高品質果實及解決設施中連作障礙,並增加於低溫下耐寒性,本研究以 ‘蜜世界’ 洋香瓜作為接穗,嫁接於越瓜‘黑皮’、‘銀華’與‘青皮’砧木和南瓜‘壯士’、‘共榮’與‘新土佐’砧木,採用頂劈接、貼接與靠接三種方式,嫁接癒合後調查成活率,並定植於三吋盆中調查栽培兩週之生長情形。 嫁接成活率以越瓜砧木顯著優於南瓜,越瓜砧木不同品種之間沒有顯著差異,頂劈接和貼接之間沒有顯著差異,較靠接之成活率高。定植後7天及14天以嫁接處理顯著促進植株的營養生長,頂劈接嫁接苗中,除了南瓜‘共榮’砧木嫁接苗,其他組合顯著促進接穗長、葉片數、葉面積與地上部鮮乾重累積。貼接嫁接苗中,越瓜‘青皮’與南瓜‘壯士’砧木顯著增加接穗長與地上部鮮乾重,南瓜‘共榮’砧木嫁接苗之生長情形亦不佳,推薦越瓜‘青皮’、南瓜‘壯士’和‘新土佐’作為砧木,以頂劈接為主要的嫁接方式。 ‘蜜世界’洋香瓜頂劈接苗栽培於田間,嫁接均顯著提早始花期促進果實產量,但糖度於處理間沒有顯著差異;‘蜜世界’洋香瓜嫁接苗以5 L塑膠袋栽培於簡易遮雨棚,越瓜‘青皮’砧木嫁接苗之果實重量顯著優於其他處理組,糖度於處理間沒有顯著差異。石蠟切片觀察嫁接部位癒合情形結果表示所有頂劈接苗於嫁接後第3天均癒合良好沒有分離的現象,並有壞死層的出現,處理間不影響嫁接苗吸收壞死層的速度,於嫁接後第12天,癒合處有觀察到新生維管束,嫁接處理於此時壞死層幾乎完全消失,唯南瓜‘壯士’砧木苗有較零星的壞死層組織存在。 洋香瓜頂劈接苗以連作介質栽培結果顯示其顯著抑制嫁接苗與自根苗生長,但是嫁接苗之營養生長仍顯著較自根苗佳,有較佳的葉面積與鮮乾重累積。以HPLC分析收穫後之介質酚酸結果表示,自根苗介質以沒食子酸和香草酸為主,其他處理以沒食子酸與間羥基苯甲酸為主,總酚含量以南瓜‘新土佐’顯著最高,自根苗與‘青皮’越瓜之間沒有顯著差異,南瓜‘壯士’之總酚含量最低。洋香瓜頂劈接苗處理沒食子酸結果顯示處理不影響嫁接苗生長,但顯著影響自根苗生長,其地上部鮮乾重顯著減少。 洋香瓜頂接苗於低溫13℃下生長結果顯示嫁接苗與自根苗均因低溫而生長受到抑制,嫁接苗比自根苗有顯著較佳之鮮乾重。低溫處理7天後嫁接苗與自根苗之抗氧化酵素活性均有被促進,越瓜‘青皮’砧木嫁接苗有顯著較低的MDA含量,其電解質滲漏率與南瓜‘壯士’砧木苗沒有顯著差異較其他處理低。
In order to enhance growth potential, produce high-quality fruit, overcome continuous cropping problems in greenhouses, and obtain plants with a better tolerance to cold environments, grafting techniques were used for melons. ‘Honey World’ Melon was used as the scion to graft by top cleft, splice or tongue approaches, and oriental pickling melons ‘Hei Pi’, ‘Yin Hua’ and ‘Qing Pi’, in addition to squash ‘Zhuang Shi’, ‘Gong Rong’ and ‘Xin Tu Zuo’, were used as rootstocks in this study. The survival rate of the grafted seedlings and their growth during the two weeks after transplanting into 3-inches pots were investigated. The survival rate of the grafted seedlings with oriental pickling melon rootstocks was higher than those with squash rootstocks. No difference in grafted seedlings growth was seen between those grown using three different oriental pickling melons as rootstocks. Top cleft and splice graft approaches resulted in similar survival rates, which were higher than the rate obtained following tongue grafting. On date 7 and 14 after transplant, using the top cleft grafting method, the grafted seedlings with all rootstocks had significantly better plant growth than the controls (no grafting), including increase in scion stem length, number of leaves, leaf area, and above-ground fresh and dry weight. With splice grafting, grafted seedlings with oriental pickling melon ‘Qing Pi’ and squash ‘Zhuang Shi’ as their rootstocks had significantly improved scion stem length and greater above-ground fresh and dry weight, while grafted seedlings produced using squash ‘Gong Rong’ as the rootstock exhibited poor growth. The results demonstrated that top grafting is the best method, and oriental pickling melon ‘Hei Pi’ and squash ‘Zhuang Shi’ and ‘Xin Tu Zuo’ are recommended for use as rootstocks for melon grafting. In the field study, the grafted plants exhibited significantly earlier flowering, and fruit production was promoted, while no difference in the fruit sugar content was noted between seedlings grown using different grafting techniques and different rootstocks. When plants were grown under a plastic rain shelter, the plants grafted on oriental pickling melon ‘Qing Pi’ had a significantly higher fruit weight, while containing the same high sugar content as plants grown under other treatments. Histological study of paraffin sections of the grafted junctional tissue showed that wounds were all bonding together tightly and had healed 3 days after grafting. In addition, necrotic layers were observed on the junction with all grafting methods, but these layers had almost disappeared by day 12 after grafting, and formation of vascular bundles was observed, with the exception that spotted necrotic layers were seen in the tissues of plants grafted on squash ‘Zhuang Shi’. When the melon seedlings were cultured with medium that had been used for continuous cropping twice, the medium exerted a significant inhibitory effect on the growth of both grafted and un-grafted seedlings, while the growth of the grafted seedlings was still better than that of the un-grafted seedlings. The grafted seedlings had a larger leaf area and greater above-ground fresh and dry weights. Using HPLC to analyze the phenolic compounds in the medium, the results showed that medium used for un-grafted melons mainly contained gallic acid and vanillic acid, and medium used for grafted melons mainly contained gallic acid and m-hydroxybenzoic acid. In terms of the level of total phenolic compounds, medium-cultured grafted melon produced using squash ‘Xin Tu Zuo’ as the rootstock had the highest content, followed by un-grafted plants and those that used oriental pickling melon ‘Qing Pi’ as the rootstock, which had similar levels of total phenolic compounds; melon produced using squash ‘Zhuang Shi’ as the rootstock had the lowest content. The plant growth of both grafted and un-grafted seedlings was inhibited when melons were cultured in a low-temperature environment at 13℃ for 7 days, while the grafted seedlings had significantly greater fresh and dry weights. The activities of reactive oxygen species-scavenging enzymes were promoted by the low temperature in the grafted and un-grafted seedlings. Plants grown from seedlings produced using oriental pickling melon ‘Qing Pi’ as the rootstock had a significantly lower MDA content, and their electrolyte leakage rate was at a similar level to that of seedlings grown using squash ‘Zhuang Shi’ as the rootstock, which was significantly lower than that of seedlings produced using other rootstocks.
URI: http://hdl.handle.net/11455/95722
文章公開時間: 2018-11-02
顯示於類別:園藝學系

文件中的檔案:
檔案 大小格式 
nchu-105-7103032001-1.pdf4.2 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。