Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95727
標題: 建立蝴蝶蘭礦物元素診斷暫定標準與替代介質之評估
Establishing tentative norms for mineral nutrition diagnosis and evaluation of substitute culture media for Phalaenopsis spp.
作者: 胡鐘躍
Chung-Yueh Hu
關鍵字: 植體分析
標準值
適宜範圍
施肥效益
替代介質
plant analysis
standard values
optimal range
fertilizer efficiency
substitute media
引用: 王斐能、張耿衡、謝廷芳、鍾仁賜. 2008. 三種不同配方之肥料對臺灣白花蝴蝶蘭營養生長與養分吸收之影響. 臺灣園藝54(3):231-246. 行政院農委會. 2016. 農產品別資料查詢. 農業統計資料查詢. < http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx>. 米田和夫.2007. 蝴蝶蘭. 行政院農業委員會 p.54-88. 伊藤真廣、林瑞松. 2008. 栽培介質理化性之變化對蝴蝶蘭營養生長之影響. 興大園藝 33(2):89-102. 李哖. 1976. 花卉無土栽培. 豐年半月刊 26:18-25. 李哖. 1988. 蝴蝶蘭之生長與開花生理. 蘭花研討會專集. 台東農業改良場印. p.21-32. 李哖. 2002. 蘭花產業及其栽培生理. 論文發表於「花卉產業現況與未來發展方向研討會」. 台灣區花卉發展協會. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化.中國園藝 43(4):295-305. 李嘉慧、李哖. 1991. 臺灣蝴蝶蘭根和葉的形態與解剖的特性. 中國園藝 37(4):237-248. 沈再木. 2008. 蝴蝶蘭栽培介質種類及物化特性. p.19-28. 沈再木、徐善德編著. 蝴蝶蘭栽培. 國立嘉義大學編印. 嘉義. 吳柏宏。2011。蝴蝶蘭栽培技術之改良及菌根之應用。國立台灣大學園藝學研究所博士論文. 台北. 吳明珊. 2016. 蝴蝶蘭瓶苗分及對出瓶小苗生長與礦物營養含量變化之影響. 國立中興大學園藝學研究所碩士論文. 台中. 吳容儀、賴彥旭. 2010. 栽培介質對大慧星風蘭植株生育之研究. 台灣農業研究59(4): 219-227. 邱建誠、謝廷芳、戴廷恩. 2017. 不同來源大白花蝴蝶蘭Phalaenopsis Sogo Yukidian種苗生育特性之比較. 台灣農業研究66(1):53-65. 林菁敏. 1983. 溫度、無機養分與栽培介質對蝴蝶蘭生長之影響. 國立臺灣大學園藝學研究所碩士論文. 台北. 林立航、林瑞松. 2006. 不同栽培介質對蝴蝶蘭生長之影響. 興大園藝31(1):89-98. 林思佑、陳香君、鍾仁賜、張耀乾. 2013. 株齡影響蝴蝶蘭對介質鹽度的耐受度. 台灣園藝 59(1):1-13. 官順協. 2007. 介質種類及施肥濃度對蝴蝶蘭生長之影響. 國立嘉義大學園藝學系碩士論文. 嘉義. 洪惠娟、魏芳明. 2014. 木質纖維人造水苔應用於蝴蝶蘭栽培之研究. 臺中區農業改良場研究彙報 124: 59-67. 高鈺豐.2009. 栽培介質、肥料種類及濃度對蝴蝶蘭生長與開花之影響.國立嘉義大學園藝學系碩士論文. 嘉義. 郭雅紋、蔡宜峰、洪惠娟. 2011. 氮肥型態和用量對虎頭蘭生育性狀和花卉品質之影響. 臺中區農業改良場100年度科技計畫研究成果發表會論文輯. P.47-53. 張則周. 2008. 植物營養學. 五南圖書出版股份有限公司. 台北. 台灣. 張元聰、陳燿煌、韓錦絲. 2009.蝴蝶蘭設施栽培. 台南區農業專訓 67:28-33. 張廣淼、蔡正賢、吳添益. 2007. 肥料用量對高架草莓生育及產量之影響. 苗栗區農業改良場研究彙報 1:01-14. 張耿衡、蔡隆禾、吳容儀、戴廷恩、謝廷芳.2007. 樹皮作為蝴蝶蘭栽培介質之評估. 台灣農業研究 56(3):237-252. 張耿衡、戴廷恩、黃勝忠、曹進義、蔡媦婷、王斐能、張愛華、侯鳳舞. 2006. 人造纖維應用於蝴蝶蘭栽培介質之研究. 臺灣園藝 52(1):71-80. 張耿衡、王斐能、謝廷芳、鐘仁賜. 2008. 三種不同配方之肥料對蝴蝶蘭小苗營養生長與養分吸收之影響. 台灣農業化學與食品科學 46:57-69. 張珈錡、廖玉珠. 2012. 植物對硝酸態氮和銨態氮之吸收與利用.種苗科技專訊 78:16-19. 陳仁炫. 1999. 合理化施肥的要領和對策. 農作物合理化施肥手冊 p.18-26. 花蓮區農業改良場編印. 陳麗筠. 2008. 蝴蝶蘭栽培之養分管理. P.35-40. 刊於:沈再木、徐善德主編. 蝴 蝶蘭栽培. 國立嘉義大學. 嘉義. 陳鴻基. 2008. 陽離子交換容量. P.24-29. 刊於:陳仁炫、鄒裕名主編. 土壤與肥料分析手冊(一)土壤化學性質分析. 中華土壤肥料學會. 陳瀅如. 2001. 礦物營養對蝴蝶蘭生育、組織礦物成分及抽梗時葉片品質之影響. 台灣大學園藝學研究所碩士論文. 台北. 陳福旗. 2007. 熱帶蘭花生理學. 睿煜出版社. 屏東. 台灣. 彭德昌. 2007. 葉片分析在合理化施肥之應用. 豐年 57(3):52-58. 游富鈴. 2004. 水苔、椰纖混合介質及添加緩效性肥料對蝴蝶蘭生育之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 彭穎君、鍾仁賜、何聖賓、張耀乾. 2010. 銨態與硝酸態氮比例影響大白花蝴蝶蘭營養與生殖生長. 臺灣園藝 56:45-56. 雷欣怡. 2007. 蝴蝶蘭花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文. 台北. 楊旻憲. 2014. 春石斛蘭栽培介質與緩釋性肥料. 台中區農業專訓 84:21-25. 楊旻憲、魏芳明. 2012. 水苔緊實度對朵麗蝶蘭生育之影響. 台中區農業改良場研究匯報 117:49-62. 蔡宜峰、黃祥慶. 1996. 利用報歲蘭養分吸收效率改進肥培技術之研究. 臺中區農業改良場研究彙報 53:13-24. 蔡宜峰、黃勝忠.2003. 不同氮肥用量與有機介質對彩色海芋生長及切花產量之影響.臺中區農業改良場研究彙報 78:13-21. 蔡宜峰、張隆仁、邱建中. 2001. 施用有機質肥料與化學肥料對紫錐花養分吸收之影響. 台中區農業改良場研究彙報 72:35-43. 潘瑞熾. 2013. 植物生理學. 藝軒圖書出版社. 台北. 台灣. 蔣廣元、陳麗筠. 2012. 複合肥料對朵麗蝶蘭生長、開花及礦物元素濃度之影響. 臺灣園藝 58:199-217. 鍾仁賜. 2008. 氮. P.30-42. 刊於:陳仁炫、鄒裕名主編. 土壤與肥料分析手冊(一)土壤化學性質分析. 中華土壤肥料學會. 戴廷恩、張耿衡、謝廷芳.2012. 生物可分解材料作為蝴蝶蘭栽培介質之可行性評估. 台灣農業研究 64(3):250-257. 顏婉怡. 2010. 種植蝴蝶蘭之水苔介質酸化現象之研究. 台灣大學園藝學研究所碩士論文. 台北. 蘇挺檳. 2009. 介質含水率、肥料濃度與栽培期對蝴蝶蘭兩階段接力栽培生長與開花之影響. 國立嘉義大學藝學系碩士論文. 嘉義. 羅秋雄. 高品質盆花介質及營養管理. 桃園區農業改良場 <http://www.tydares.gov.tw/htmlarea_file/web_articles/tydais/1472/soil5.pdf> Andreota, R. C., F. Barros, and M. G. Sajo. 2015. Root and leaf anatomy of some terrestrial representatives of the Cranichideae tribe (Orchidaceae). Braz. J. Bot. 38:367-378. Ahmad, I., J. M. Dole, and P. Nelson. 2012. Nitrogen application rate, leaf position and age affect leaf nutrient status of five specialty cut flowers. Scientia Hort. 142: 14-22. Alberta.ca Agriculture and Forestry. 1998. Crop nutrition and fertilizer requirements, Alberta. 1 January 1998. < http://www.agric.gov.ab.ca>. Aguilar, E. B., L. A. V. Aguilar, A. M. C. González, A. D. Cartmill, D. L. Cartmill, E. A. García, and L. I. Jímenez. 2013. Potassium nutrition in Lilium: Critical concentrations, photosynthesis, water potential, leaf anatomy, and nutrient status. HortScience 48(12):1537-154. Baligar, V. C., N. K. Fageria, and Z. L. He. 2001. Nutrient use efficiency in plant. Commun. Soil Sci. Plant Anal. 32(7&8):921-950. Bercu, R., A. Bavaru and L. Broască. 2011. Anatomical aspects of Phalaenopsis amanilis(L.) blume. Ann. Romanian Soc. Cell Biol. 16:102-109. Batchelor, S.R. 1983. Phalaenopsis-part 4. Amer. Orchid. Soc. Bull. 52:243-250. Barker, A.V. and H.A. Mills. 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2:253–432. Cull, D. C. 1981. Alternatives to peat as container media: organic resources in the UK. Acta Hort.126: 69-81. Christenson, E. A. 2001. Phalaenopsis: a monograph. Portland, Oregon, USA. Chang, K. H., R. Y. Wu, G.P. Chang, T. F. Hsieh, and R. S. Chung. 2012.Effects of nitrogen concentration on growth and nutrient uptake of Anthurium andraeanum Lind. cultivated in coir under different seasonal conditions. HortScience 47(4):515-521. Campbell, C. R. and C. O. Plank. 2000. Foundation for practical application of plant analysis, p. 1-6. In: C. Ray Campbell (eds.), Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States. North Carolina Dept. Agr. Consumer Serv. Agron. Div., Raleigh, USA. Dučić, T., and A. Polle. 2005. Transport and detoxification of manganese and copper in plant. Braz. J. Plant Physiol. 17(1):103-112. Dole, J.M., and H. F., Wilkins. 1991. Relationship between nodal position and plant age on the nutrient composition of vegetative poinsettia leaves. J. Amer. Soc. Hort. Sci. 116:248–252. Findenegg, G. R. 1987. A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103: 239-243. Hew, C. S., L. Y. Lim, and C. M. Low. 1993. Nitrogen uptake by tropical orchids. Environ. Exp. Bot. 33:273-281. Hwang, S. J. and B. R. Jeong. 2007. Growth of Phalaenopsis plants in five different potting media. J. Jap. Soc. Hort. Sci. 76 (4): 319–326. Hopkins, W. G. and N. P. A. Hüner. 2003. Nitogen assimilation, P. 167-185. In: W. G. Hopkins and N. P. A. Hüner (eds.). Introduction to plant physiology. Wiley. London , U. K. Ichihashi, S. 2003. Effects of nitrogen application on leaf growth, inflorescencedevelopment, and flowering in Phalaenopsis. The Bul. Aichi Univ. Edu. 52:35–42. Kim, H. J., J. Kim, D. L. Yun, K. S. Kim, and Y. J. Kim. 2016. Growth and flowering of Doritaenopsis Queen Beer ‘Mantefon’ as affected by different potting substrates. Hort. J. Preview :1~6. Kubota, S., T. Fukai and K. Yoneda. 1991. The growth and nutrient absorption in Phalaenopsis plant.Proc. Nagoya Intl. Orchid Show 91. pp. 129-132. Kubota, S., K. Yoneda, and Y. Suzuki. 2000. Effects of ammonium to nitrate ratio in culture medium on growth and nitrate absorption of Phalaenopsis seedlings in vitro. Environ. Control in Biol. 38:281-284. Kubota, S. and K. Yoneda. 1993. Commercial components of Phalaenopsis at various physiological growth stages. Bul. College Agr. Vet. Medicine, Nihon Univ. 50:7–10. Lei, H.Y., Ho, S.B. and Chang, Y.C. 2008. Changes of mineral concentration inPhalaenopsis during reproductive stages. HortScience 43:1285. Poole, H. A. and T. J. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchid. Amer. Orchid. Soc. Bull. 43: 242-247. Poole, H. A. and T. J. Sheehan. 1982. Mimeral nutrition of orchid root, p.195-212. In: J. Arditti(ed.). Orchid biology: Reviews and Perspectives, Vol II. Cornel University Press. Ithaca. New York. Ruamrungsri, S., P. Samanit, T. Pornsawatchai, N. Potapohnand and S. Fukai. 2007. Effect of fertilizer application on nutritional concentrations and flower quality of Phalaenopsis hybrid. Acta Hort. 755:495-498. Rahayu, S. 1980. Absorption and transport of phosphorous through Phalaenopsis leaf and root. Proc. 3rd ASEAN Orchid Congress. Malaysia. P.37-48. Roca-Pérez, L., R. Boluda, and P. Pérez-Bermúdez. 2006. Seasonal variation in nutrient status of foxglove leaves. J. Plant Nutr. 29:1077–1084. Raudales, R. E. 2016. Nutritional disorders of florists’ crops, p. 1-26. In: R.J. McGovern and W.H. Elmer (eds.), Handbook of Florist''s Crops Diseases. USA. Susilo, H., Y. C. Peng, and Y. C. A. Chang. 2014. Nitrogen source for inflorescence development in Phalaenopsis: I. relative significance of stored and newly absorbed nitrogen. J. Amer. Soc. Hort. Sci. 139:69-75. Susilo, H., Y. C. Peng, S. C. Lee, Y. C. Chen, and Y. C. A. Chang. 2013. The uptake and partitioning of nitrogen in Phalaenopsis Sogo Yukidian ‘V3’ as shown by 15N as a tracer. J. Amer. Soc. Hort. Sci. 138:229-237. Tanaka, T., T. Matsuno, M. Masuda, and K. Gomi. 1988. Effects of concentration of nutrient solution and potting media on growth and chemical composition of a Phalaenopsis hybrid. J. Jap. Soc. Hort. Sci. 57: 78-84. Trépanier, M., M. P. Lamy and B. Dansereau. 2009. Phalaenopsis can absorb urea directly through their roots. Plant Soil 319:95–100. Trelka, T., W. Bres, A. Jozwiak and A. Kozlowska. 2010. Phalaenopsis cultivation in different media. part Ⅱ. nutrients and chlorophyll concentration in leaves and roots. 9:95-104. van Iersel, M. W., P. A. Thomas, R. B. Beverly, J. G. Latimer, and H. A. Mills. 1998. Nutrition affects pre- and posttransplant growth of Impatiens and Petunia plugs. HortScience 33(6): 1014-1018. White, J. 1986. Media mania: surveying the mixed: up realm of orchid potting materials. Amer. Orchid Soc. Bull. 55:488-493. Wang, Y.T. and L. L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29:269–271. Wang, Y.T. 1995. Medium and fertilization affect performance of potted Dendrobium and Phalaenopsis. HortTechnology 5:234–237. Wang, Y.T. 1996. Effects of six fertilizers on vegetative growth and flowering of Phalaenopsis orchids. Scientia Hort. 65:191–197. Wang, Y.T. 1998. Impact of salinity and media on growth and flowering of a hybrid Phalaenopsis orchid. HortSceince 33:247–250. Wang, Y.T. 2000. Impact of a high phosphorus fertilizer and timing of terminating fertilization on flowering of a hybrid moth orchid. HortScience 35:60–62. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer. Soc. Hort. Sci. 127:442–447. Wang, Y.T. 2003. Effects of N and P concentration on growth and flowering of the Phalaenopsis orchid. HortScience 38:746. Wang, Y.T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42:1563–1567. Wang, Y.T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis in two root substrates. HortScience 43:350–353. Wang, Y.T. 2010. Phalaenopsis mineral nutrition. Acta Hort. 878:321–333. Yoneda, K.,M. Usui, and S.Kubota.1997.Effect of nutrition deficiency on growth and flowering of Phalaenopsis. J. Jap. Soc. Hort. Sci. 66:141-147. Yao, H. Y., R. S. Chung, S. B. Ho and Y.-C. A. Chang. 2008. Adapting the pour -through medium extraction method to Phalaenopsis grown in sphagnum moss. HortScience 43:2167–2170. Zhang, W. J., X. K. Li, F. Chen, and J. W. Lu. 2012. Accumulation and distribution characteristics for nitrogen, phosphorus and potassium in different cultivars of Petunia hybrid Vlim. Scientia Hort. 141: 83-90.
摘要: 本研究的目的為建立蝴蝶蘭礦物元素診斷的標準值,並利用植體分析數據評估施肥效益,供日後估算肥料用量之參考,以及探討不同替代介質栽培下植株生長及營養差異。 蒐集台灣中南部不同蘭園之健康大白花蝴蝶蘭Phalaeopnsis Sogo Yukidian ‘V3’,並分為小苗、中苗及大苗三個階段進行植體分析。採樣部位分為地上部及根部。礦物元素在蝴蝶蘭植體中的分配,氮、鉀、鈣及錳在地上部濃度較高,磷、鐵及鋅濃度在根部較高。鉀為地上部濃度最高之元素,氮為根部濃度最高之元素。隨著株齡的增加,氮、磷及鉀濃度有下降之趨勢,鈣濃度則隨株齡增加而上升,鎂則在各時期濃度相似。植體分析結果顯示小苗階段地上部各元素濃度氮為1.89-2.78%,磷0.24-0.37%,鉀2.84-5.68%,鈣1.15-2.37%,鎂0.57-0.85%,鐵48-74 mg/kg,錳498-773 mg/kg,鋅22-41 mg/kg及銅7-11 mg/kg;中苗階段地上部各元素濃度氮為1.53-2.33%,磷0.16-0.33%,鉀1.94-3.12%,鈣1.58-2.65%,鎂0.69-0.86%,鐵32-67 mg/kg,錳473-934 mg/kg,鋅20-445 mg/kg及銅5-9 mg/kg;大苗階段地上部各元素濃度氮為1.46-1.67%,磷0.17-0.25%,鉀1.94-2.65%,鈣1.83-2.66%,鎂0.50-0.65%,鐵38-50 mg/kg,錳453-620 mg/kg,鋅15-23 mg/kg及銅5-6 mg/kg。 在栽培過程中利用期前期後之植體分析數據及實際施肥用量,評估不同蘭園植株之肥料吸收效率,結果顯示植株氮、磷及鉀吸收效率A蘭園為70%、14%及53%;B蘭園為64%、17%及26%。不同蘭園之栽培條件及肥培管理模式不同,使植株對肥料的吸收效率會有所差異,因此肥料用量需針對各別蘭園進行評估。 Phalaeopnsis Sogo Yukidian ‘V3’小苗於水苔混合半量木質纖維介質或椰纖毯介質之栽培下生長與水苔栽培者無顯著差異,且根部生長較佳,但中苗及大苗之生長仍以水苔栽培者顯著較佳。因此在開發水苔以外之替代介質時,仍需針對其介質特性,找到最適合之肥培管理模式。 將所提出之大白花蝴蝶蘭礦物元素適宜範圍來檢驗不同替代介質栽培之植株分析數據,發現替代介質栽培之植株生長較差可能與植體內氮、鈣及鎂濃度低於適宜範圍有關,表示目前之暫定適宜範圍對於檢查不正常植株仍具參考價值。
The objective of this study was to establish the nutrient diagnostic standard norm for Phalenopsis plant analysis. Plant analysis data can be used to evaluate fertilizer efficiency which can be the reference for future fertilizer application. We also investigated the influences of substitute media on the growth and nutritional status of Phalaenopsis. Cultivation for Phalaenopsis Sogo Yukidian‘V3’was divided into three stages (Ⅰ,Ⅱ,Ⅲ) and plant analysis were performed for each stage. We collected healthy plants from different orchid nurseries from central and southern Taiwan. Plant samples position were divided into shoots and roots for tissue analysis. The data shown that in Phalaenopsis: shoots accumulate more N, K, Ca and Mg, while roots accumulate more P, Fe and Zn. With the increase of plant age, the concentration of N, P and K decreased, while Ca increased, and Mg concentration is similar in each stage. Plant analysis result show the shoot optimal concentrations range in stageⅠis N=1.89-2.78%, P=0.24-0.37%, K=2.84-5.68%, Ca=1.15-2.37%, Mg=0.57-0.85%, Fe=48-74 mg/kg, Mn=498-773 mg/kg, Zn=22-41 mg/kg and Cu=7-11 mg/kg; in stage Ⅱ is N=1.53-2.33%, P=0.16-0.33%, K=1.94-3.12%, Ca=1.58-2.65%, Mg=0.69-0.86%, Fe=32-67 mg/kg, Mn=473-934 mg/kg, Zn=20-45 mg/kg and Cu=5-9 mg/kg; in stage Ⅲ is N=1.46-1.67%, P=0.17-0.25%, K=1.94-2.65%, Ca=1.83-2.66%, Mg=0.50-0.65%, Fe=38-.50 mg/kg, Mn=453-620 mg/kg, Zn=15-23 mg/kg and Cu=5-6 mg/kg. Compare the plant analysis data with the actual fertilizer amount applied during the set period, we evaluated plant fertilizer absorption efficiency of different orchid nurseries. Data showed that uptake efficiency of plant nitrogen, phosphorus and potassium at nursery A were 70%, 14% and 53%, respectively; for nursery B they were 64%, 17% and 26%, respectively. The culture condition and fertilizer program were different in two orchid nurseries, which led to fertilizer uptake efficiency. The fertilizer uptake efficiency can be used for improving management program. Phal. Sogo Yukidian ‘V3’ plants grown in 4.5-cm pot with sphagnum moss mixed with 50% wood fiber or grown in coir sheet was not significantly different with those grown in sphagnum moss. Though, the roots grown better in coir sheet or in wood fiber substrate. For plants of 7.5-cm pots or 10.5-cm pots with sphagnum moss had better growth. It tells us that for every growing substrate require an individual protocol for water and fertilizer management. If we compare the elements data of plants in substitute growing mix with the optimal ranges for ‘V3’ Phalaenopsis, poor growth of plants in substitute growing mix might be the result of low N, Ca and Mg concentration. It tells us that the tentative optimal ranges can be valuable for examining abnormal plants even grown in different substrates.
URI: http://hdl.handle.net/11455/95727
文章公開時間: 2017-08-11
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.