Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95738
標題: 纖維素水膠和氣凝膠製備及其農業之應用
Preparation of Cellulose-Based Hydrogel and Aerogel and their Agriculture Application
作者: 陳羿樺
Yi-Hua Chen
關鍵字: 水膠
氣凝膠甲基纖維素
羥丙基甲基纖維素
控釋型肥料
Hydrogel
Aerogel
Methyl cellulose
Hydroxypropyl methylcellulose
Controlled release fertilizer
引用: 一、中文部分 (1)圖書 莊作權(2005)土壤肥料。三民書局。pp.50-54。 (2)期刊論文 張雅婷(2006)溫度敏感型甲基纖維素水膠之成膠行為與間葉幹細胞在其中之生物相容性。 二、西文部分 (1)Book Zhbankov R. G. (1966) Infrared spectra of cellulose and its derivatives. pp. 308. (2)Journal Articles 1. Abd El-Rehim, H. A., E.-S. A. Hegazy and H. L. Abd El-Mohdy (2006). Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. Journal of Applied Polymer Science 101(6): 3955-3962. 2. Almeida, N., L. Rakesh and J. Zhao (2014) Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt. Carbohydrate Polymers 99: 630-637. 3. Altomare, L., A. Cochis, A. Carletta, L. Rimondini and S. Farè (2016). Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication. Journal of Materials Science: Materials in Medicine 27(5): 95. 4. Anjali, C. H., Y. Sharma, A. Mukherjee and N. Chandrasekaran (2012). Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science 68(2): 158-163. 5. Aouada, F., M. de Moura, W. Orts and L. C. Mattoso (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science 45(18): 4977-4985. 6. Azeem, B., K. KuShaari, Z. B. Man, A. Basit and T. H. Thanh (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release 181: 11-21. 7. Bai, C., S. Zhang, L. Huang, H. Wang, W. Wang and Q. Ye (2015). Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydrate Polymers 125: 376-383. 8. Bain, M. K., D. Maity, B. Bhowmick, D. Mondal, M. M. R. Mollick, G. Sarkar, M. Bhowmik, D. Rana and D. Chattopadhyay (2013). Effect of PEG–salt mixture on the gelation temperature and morphology of MC gel for sustained delivery of drug. Carbohydrate Polymers 91(2): 529-536. 9. Bain, M. K., M. Bhowmik, D. Maity, N. K. Bera, S. Ghosh and D. Chattopadhyay (2010). Control of thermo reversible gelation of methylcellulose using polyethylene glycol and sodium chloride for sustained delivery of ophthalmic drug. Journal of Applied Polymer Science 118(2): 631-637. 10. Bain, M. K., M. Bhowmik, D. Maity, N. K. Bera, S. Ghosh and D. Chattopadhyay (2010). Control of thermo reversible gelation of methylcellulose using polyethylene glycol and sodium chloride for sustained delivery of ophthalmic drug. Journal of Applied Polymer Science 118(2): 631-637. 11. Bajpai, A. K. and A. Giri (2002). Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive and Functional Polymers 53(2–3): 125-141. 12. Bao, Y., J. Ma and N. Li (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers 84(1): 76-82. 13. Biswal, D. R. and R. P. Singh (2004).Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers 57(4): 379-387. 14. Biswas, A., S. Kim, G. W. Selling and H. N. Cheng (2013). Microwave-assisted synthesis of alkyl cellulose in aqueous medium. Carbohydrate Polymers 94(1): 120-123. 15. Boström, M., W. Kunz and B. W. Ninham (2005). Hofmeister effects in surface tension of aqueous electrolyte solution. Langmuir 21(6): 2619-2623. 16. Bromberg, L. E. and E. S. Ron (1998). Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews 31(3): 197-221. 17. Campos, E. V. R., J. L. de Oliveira, L. F. Fraceto and B. Singh (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development 35(1): 47-66. 18. Chang, C. and L. Zhang (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers 84(1): 40-53. 19. Chang, Y.-C., C.-E. Kan, G.-F. Lin, C.-L. Chiu and Y.-C. Lee (2001). 'Potential benefits of increased application of water to paddy fields in Taiwan.' Hydrological Processes 15(8): 1515-1524. 20. Chen, C. H., C. C. Tsai, W. Chen, F. L. Mi, H. F. Liang, S. C. Chen and H. W. Sung (2006). Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules 7: 736-743. 21. Chen, C.-C. and C.-C. Chang (2005). The impact of weather on crop yield distribution in Taiwan: some new evidence from panel data models and implications for crop insurance. Agricultural Economics 33: 503-511. 22. Chen, X., X. Mao, Q. Lu, Z. Liao and Z. He (2016). Characteristics and mechanisms of acrylate polymer damage to maize seedlings. Ecotoxicology and Environmental Safety 129: 228-234. 23. Das, R., A. B. Panda and S. Pal (2012). Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose 19(3): 933-945. 24. Davidson, D. W., M. S. Verma and F. X. Gu (2013). Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. SpringerPlus 2(1): 1-9. 25. Davis, D. L. and A. K. Ahmed (1998). Exposures from indoor spraying of chlorpyrifos pose greater health risks to children than currently estimated. Environmental Health Perspectives 106(6): 299-301. 26. Demitri, C., F. Scalera, M. Madaghiele, A. Sannino and A. Maffezzoli (2013). Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. International Journal of Polymer Science 2013: 1-6. 27. El-Rehim, H. A. A., E.-S. A. Hegazy and H. L. A. El-Mohdy (2004). Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. Journal of Applied Polymer Science 93(3): 1360-1371. 28. Feng, E., G. Ma, Y. Wu, H. Wang and Z. Lei (2014). Preparation and properties of organic–inorganic composite superabsorbent based on xanthan gum and loess. Carbohydrate Polymers 111: 463-468. 29. Ghandehari, H., P. Kopečková and J. Kopecek (1997). In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18(12): 861-872. 30. Goncalves, A. A. L., A. C. Fonseca, I. G. P. Fabela, J. F. J. Coelho and A. C. Serra (2016). Synthesis and characterization of high performance superabsorbent hydrogels using bis 2-( methacryloyloxy)ethyl phosphate as crosslinker. Express Polymer Letters 10(3): 248-258. 31. Guo, J.-H., G. W. Skinner, W. W. Harcum and P. E. Barnum (1998). Pharmaceutical applications of naturally occurring water-soluble polymers. Pharmaceutical Science & Technology Today 1(6): 254-261. 32. Hsu, H.-H. and C.-T. Chen (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics 79(1): 87-104. 33. Hüsing, N. and U. Schubert (1998). Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition 37(1-2): 22-45. 34. Hüttermann, A., M. Zommorodi and K. Reise (1999). Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil and Tillage Research 50(3–4): 295-304. 35. Jerobin, J., R. S. Sureshkumar, C. H. Anjali, A. Mukherjee and N. Chandrasekaran (2012). Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydrate Polymers 90(4): 1750-1756. 36. Jin, K.-M. and Y.-H. Kim (2008). Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. Journal of Controlled Release 127(3): 249-256. 37. Joshi, S. C. (2011). Sol-Gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10): 1861. 38. Kazanskii, K. S. and S. A. Dubrovskii (1992). Chemistry and physics of “agricultural” hydrogels. Polyelectrolytes Hydrogels Chromatographic Materials. Berlin, Heidelberg, Springer Berlin Heidelberg: 97-133. 39. Khan, R. A., S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany and M. Lacroix (2010). Production and Properties of Nanocellulose-Reinforced Methylcellulose-Based Biodegradable Films. Journal of Agricultural and Food Chemistry 58(13): 7878-7885. 40. Klouda, L. and A. G. Mikos (2008). Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 68(1): 34-45. 41. Kobayashi, K., C.-i. Huang and T. P. Lodge (1999). Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32(21): 7070-7077. 42. Kwon, I. C., Y. H. Bae, T. Okano and S. W. Kim (1991). Drug release from electric current sensitive polymers. Journal of Controlled Release 17(2): 149-156. 43. LEMON, E. R. and A. E. ERICKSON (1955). 'PRINCIPLE OF THE PLATINUM MICROELECTRODE AS A METHOD OF CHARACTERIZING SOIL AERATION.' Soil Science 79(5): 383-392. 44. Li, J., J. Lu and Y. Li (2009). Carboxylmethylcellulose/bentonite composite gels: Water sorption behavior and controlled release of herbicide. J. Appl. Polym. Sci. 112(1): 261-268. 45. Li, X., Q. Li, Y. Su, Q. Yue, B. Gao and Y. Su (2015). A novel wheat straw cellulose-based semi-IPNs superabsorbent with integration of water-retaining and controlled-release fertilizers. Journal of the Taiwan Institute of Chemical Engineers 55: 170-179. 46. Li, X.-G., M.-R. Huang and H. Bai (1999). Thermal decomposition of cellulose ethers. J. Appl. Polym. Sci. 73(14): 2927-2936. 47. Liang, H.-F., M.-H. Hong, R.-M. Ho, C.-K. Chung, Y.-H. Lin, C.-H. Chen and H.-W. Sung (2004). Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous Alginate as a pH-Sensitive hydrogel. Biomacromolecules 5(5): 1917-1925. 48. Liang, R., M. Liu and L. Wu (2007). Controlled release NPK compound fertilizer with the function of water retention. Reactive and Functional Polymers 67(9): 769-779. 49. Lin, C.-C. and A. T. Metters (2006). 'Hydrogels in controlled release formulations: Network design and mathematical modeling.' Advanced Drug Delivery Reviews 58(12–13): 1379-1408. 50. Liu, S. Q., S. C. Joshi and Y. C. Lam (2008). Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. Journal of Applied Polymer Science 109(1): 363-372. 51. Mamada, A., T. Tanaka, D. Kungwatchakun and M. Irie (1990). Photoinduced phase transition of gels. Macromolecules 23(5): 1517-1519. 52. Mayol, L., D. De Stefano, F. De Falco, R. Carnuccio, M. C. Maiuri and G. De Rosa (2014). Effect of hyaluronic acid on the thermogelation and biocompatibility of its blends with methyl cellulose. Carbohydrate Polymers 112: 480-485. 53. Mezdour, S., G. Cuvelier, M. J. Cash and C. Michon (2007). Surface rheological properties of hydroxypropyl cellulose at air–water interface. Food Hydrocolloids 21(5–6): 776-781. 54. Obaidat, A. A. and K. Park (1997). Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18(11): 801-806. 55. Ochoa Machiste, E. and G. Buckton (1996). Dynamic surface tension studies of hydroxypropylmethylcellulose film-coating solutions. International Journal of Pharmaceutics 145(1): 197-201. 56. Okano, T., N. Yamada, H. Sakai and Y. Sakurai (1993). A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). Journal of Biomedical Materials Research 27(10): 1243-1251. 57. Qiu, Y. and K. Park (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53(3): 321-339. 58. Quiñones, J. P., Y. C. García, H. Curiel and C. P. Covas (2010). Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers 80(3): 915-921. 59. Raafat, A. I., M. Eid and M. B. El-Arnaouty (2012). Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 283: 71-76. 60. Roy, A., J. Bajpai and A. K. Bajpai (2009). Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydrate Polymers 76(2): 222-231. 61. Roy, A., S. K. Singh, J. Bajpai and A. K. Bajpai (2014). Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry 12(4): 453-469. 62. Ruel-Gariépy, E. and J.-C. Leroux (2004). In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 58(2): 409-426. 63. Sadeghi, S. H., Z. Hazbavi, H. Younesi and N. Bahramifar (2016). Trade-off between runoff and sediments from treated erosion plots and polyacrylamide and acrylamide residues. CATENA 142: 213-220. 64. Salis, A. and B. W. Ninham (2014). Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chemical Society Reviews 43(21): 7358-7377. 65. Sannino, A., C. Demitri and M. Madaghiele (2009). Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2(2): 353. 66. Sarkar, N. (1979). Thermal gelation properties of methyl and hydroxypropyl methylcellulose. Journal of Applied Polymer Science 24(4): 1073-1087. 67. Schmaljohann, D. (2006). 'Thermo- and pH-responsive polymers in drug delivery.' Advanced Drug Delivery Reviews 58(15): 1655-1670. 68. Senna, A. M., J. Braga do Carmo, J. M. Santana da Silva and V. R. Botaro (2015). Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. Journal of Environmental Chemical Engineering 3(2): 996-1002. 69. Shuman, L. M. (2003). Fertilizer source effects on phosphate and nitrate leaching through simulated golf greens. Environmental Pollution 125(3): 413-421. 70. Tang, H., L. Zhang, L. Hu and L. Zhang (2014). Application of chitin hydrogels for seed germination, seedling growth of rapeseed. Journal of Plant Growth Regulation 33(2): 195-201. 71. Tang, M. M. and R. Bacon (1964). Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon 2(3): 211-220. 72. Tang, Y., X. Wang, Y. Li, M. Lei, Y. Du, J. F. Kennedy and C. J. Knill (2010). Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydrate Polymers 82(3): 833-841. 73. Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor and S. Polasky (2002). Agricultural sustainability and intensive production practices. Nature 418(6898): 671-677. 74. Ullah, F., M. B. H. Othman, F. Javed, Z. Ahmad and H. M. Akil (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C 57: 414-433. 75. Vazquez, G., E. Alvarez and J. M. Navaza (1995). Surface tension of alcohol water + water from 20 to 50 .degree.C. Journal of Chemical & Engineering Data 40(3): 611-614. 76. Wang, M., L. Xu, C. Li, Z. Yue, M. Zhai and J. Li (2010). Antipolyelectrolyte swelling of amphiphilic hydroxypropyl methylcellulose phthalate gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 356(1–3): 89-96. 77. Wang, X., S. Lu, C. Gao, X. Xu, Y. Wei, X. Bai, C. Feng, N. Gao, M. Liu and L. Wu (2014). Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil. RSC Advances 4(35): 18382-18390. 78. Wichterle, O. and D. Lim (1960). Hydrophilic gels for biological use. Nature 185(4706): 117-118. 79. Yin, J., K. Luo, X. Chen and V. V. Khutoryanskiy (2006). Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydrate Polymers 63(2): 238-244. 80. Yu, J., J. G. Shi, P. F. Dang, A. I. Mamedov, I. Shainberg and G. J. Levy (2012). Soil and Polymer Properties Affecting Water Retention by Superabsorbent Polymers under Drying Conditions. Soil Science Society of America Journal 76(5): 1758-1767. 81. Yu, Y., X. Chu, G. Pang, Y. Xiang and H. Fang (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences 21(2): 179-185. 82. Yu, Y., Y. Zhang, X. Yang, H. Liu, L. Shao, X. Zhang and J. Yao (2015). Biodegradation process and yellowing mechanism of an ecofriendly superabsorbent based on cellulose from flax yarn wastes. Cellulose 22(1): 329-338. 83. Zhang, Y. and P. S. Cremer (2006). Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology 10(6): 658-663. 84. Zheng, T., Y. Liang, S. Ye and Z. He (2009). Superabsorbent hydrogels as carriers for the controlled-release of urea: Experiments and a mathematical model describing the release rate. Biosystems Engineering 102(1): 44-50. 85. Zhong, K., X.-L. Zheng, X.-Y. Mao, Z.-T. Lin and G.-B. Jiang (2012). Sugarcane bagasse derivative-based superabsorbent containing phosphate rock with water–fertilizer integration. Carbohydrate Polymers 90(2): 820-826. 86. Zhong, K., Z.-T. Lin, X.-L. Zheng, G.-B. Jiang, Y.-S. Fang, X.-Y. Mao and Z.-W. Liao (2013). Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers 92(2): 1367-1376. 87. Zohuriaan, M. J. and F. Shokrolahi (2004). Thermal studies on natural and modified gums. Polymer Testing 23(5): 575-579. 88. Zohuriaan-Mehr, M. J., H. Omidian, S. Doroudiani and K. Kabiri (2010). Advances in non-hygienic applications of superabsorbent hydrogel materials. Journal of Materials Science 45(21): 5711-5735.
摘要: 水膠為親水性聚合物組成之三維網狀結構,可吸收大量水分。水膠於食品、生物材料、農業、水純化等領域具應用潛力。甲基纖維素及羥丙基甲基纖維素為纖維素衍生物,水溶液於加熱或添加鹽類時具可逆性之溶膠-凝膠轉變,目前已用於多層細胞層片之培養及藥物釋放。 本研究使甲基纖維素及羥丙基甲基纖維素添加不同濃度(0.1、0.125、0.15、0.2及0.25 M)硫酸鉀以製備具溫度敏感性之纖維素水膠,以羧甲基纖維素鈉做為非溫度敏感性之對照組,探討硫酸鉀之添加對纖維素水膠之影響,進一步分析水膠之基本性質及應用於農業之應用潛力。試驗結果顯示,冷凍乾燥後的纖維素水膠呈現多孔結構,可使水分吸收,甲基纖維素及羥丙基甲基纖維素水膠之凝膠溫度及膨潤性質受原料及硫酸鉀濃度之影響,2%甲基纖維素溶液及羥丙基甲基纖維素溶液添加0.25 M硫酸鉀之凝膠溫度分別由55.6oC及67.4oC降至 27.8oC及35.1oC;兩者之膨潤率分別由3024%及2932%降至1527%及1704%,纖維素衍生物水膠之孔隙尺寸因添加硫酸鉀皆有變小之趨勢,因此可藉由調整實驗條件控制其溫度敏感性、膨潤性及孔隙尺寸。 在農業應用方面,添加1%(w/w)甲基纖維素及羥丙基甲基纖維素氣凝膠於40g砂土使保水率增加17%以上,甲基纖維素及羥丙基甲基纖維素水膠顯著增加砂土之保水性質。生長試驗結果指出,小白菜(B. rapa L.Chinensis Group)之存活率為100%,且添加纖維素氣凝膠組別之生物量與空白組無顯著差異。甲基纖維素及羥丙基甲基纖維素水膠做為控釋型肥料具緩釋效果並具有溫度相依性,添加硫酸鉀之組別緩釋效果更佳;甲基纖維素控釋型肥料於酸性環境(pH 5)之肥料釋放率較慢,羥丙基甲基纖維素則不受溶液環境之影響,上述性質證實溫度敏感性水膠未來可應用於農業缺水期與植物營養控制釋放系統。
Hydrogels are three-dimensional network of hydrophilic polymers, which have the ability to imbue a large quantity of water. The hydrogels have wide potential applications in the fields of food, biomaterials, agriculture, water purification, etc. Methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) are typical cellulose derivatives that undergo thermoreversible sol–gel transitions in their aqueous solutions upon heating or salt addition, can be used for culturing a multilayer cell sheet and drug release. In this study, the temperature sensitivity hydrogels were prepared by using methyl cellulose (MC) and Hydroxypropyl Methyl Cellulose (HPMC) and sodium carboxymethyl cellulose (CMC) as the non-temperature sensitivity control group blended with vary concentration potassium sulfate (K2SO4) (0.1、0.125、0.15、0.2 and 0.25 M). Investigate the effect of cellulose hydrogel blended with K2SO4 and theirs application of agriculture was assessed. The results indicated that gel temperature and swelling property of methylcellulose and hydroxypropyl methylcellulose hydrogels were affected by concentration of raw materials and K2SO4. The porous microstructure of hydrogels increased surface area and was helpful for water penetrating into the network of hydrogels, which was favorable to the improvement of water absorbency. The gelation temperatures change of 2% MC and HPMC solutions blended with 0.25 M K2SO4 decreased from 55.6 oC to 27.8oC and 67.4 oC to 35.1oC, respectively; and swelling ratio decreased from 3024% to 2932% and 1527% to 1704%, respectively. In the agriculture application, 40 g of soil mixed with 1%(w/w) of MC and HPMC aerogel, marked increased water-holding capacity of sandy soil by 17%. The result also showed that surviving of B. rapa L.Chinensis Group were 100%. Biomass of B. rapa L.Chinensis Group plant which soil blended with different hydrogels were no significant difference and don’t affect plant growth. MC and HPMC hydrogels in release of fertilizer with slow-release effect and temperature dependence, and the group blended with K2SO4 possessed the best. MC hydrogel in the acidic environment (pH 5) of the fertilizer release rate slow. On the other hand, HPMC is not affected by the media environment. This study would develop a controlled release system to deliver water and fertilizers to plant roots and then increase water and fertilizer use efficiency.
URI: http://hdl.handle.net/11455/95738
文章公開時間: 10000-01-01
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.