Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95739
標題: 羧甲基纖維素鈉-聚乙二醇水膠之製備及其在農業之應用
Preparation of Sodium Carboxymethyl Cellulose-Polyethylene Glycol Hydrogel for Agricultural Application
作者: 謝湘懿
Hsiang-Yi Hsieh
關鍵字: 水膠
羧甲基纖維素
聚乙二醇
控釋型肥料
Hydrogel
Carboxymethyl cellulose
Polyethylene glycol
Controlled release fertilizer
引用: 1. 中文部分 (1) 學位論文 陳羿樺 (2017) 纖維素水膠和氣凝膠製備及其農業之應用。國立中興大學森林學系碩士學位論文。pp. 42-43。 2. 西文部分 (1)Book Gulrez, S. K. H., S. Al-Assaf and G. O. Phillips (2011). Hydrogels: Methods of Preparation, Characterisation and Applications. Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications. A. Carpi. Rijeka, InTech: Ch. 05. (2)Journal Articles 1. Abd El-Mohdy, H. L. (2007). Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. Reactive and Functional Polymers 67(10): 1094-1102. 2. Azeem, B., K. Kushaari, Z. B. Man, A. Basit and T. H. Thanh (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release 181: 11-21. 3. Banedjschafie, S. and W. Durner (2015). Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. Journal of Plant Nutrition and Soil Science 178(5): 798-806. 4. Banerjee, S. S., N. Aher, R. Patil and J. Khandare (2012). Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. J Drug Deliv 2012: 103973. 5. Bao, Y., J. Ma and N. Li (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers 84(1): 76-82. 6. Benchabane, A. and K. Bekkour (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science 286(10): 1173. 7. Binetti, V. R. (2013). Development and Characterization of a Chemically Crosslinked Polyvinyl Alcohol/Polyethylene Glycol Hydrogel for Injectable Nucleus Pulposus Replacement. 8. Bonollo, S., D. Lanari and L. Vaccaro (2011). Ring-Opening of Epoxides in Water. European Journal of Organic Chemistry 2011(14): 2587-2598. 9. Campos, E. V. R., J. L. De Oliveira, L. F. Fraceto and B. Singh (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for sustainable development 35(1): 47-66. 10. Cea, M., P. Cartes, G. Palma and M. Mora (2010). Atrazine efficiency in an andisol as affected by clays and nanoclays in ethylcellulose controlled release formulations. Revista de la ciencia del suelo y nutrición vegetal 10(1): 62-77. 11. Chai, M. and M. Isa (2013). The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. 12. Chen, Y.-C., C.-L. Lo, Y.-F. Lin and G.-H. Hsiue (2013). Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials 34(4): 1115-1127. 13. Curcio, M. and N. Picci (2008). Polymer in agriculture: a review. American Journal of Agricultural and Biological Sciences 3(1): 299-314. 14. Czaja, W. K., D. J. Young, M. Kawecki and R. M. Brown (2007). The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules 8(1): 1-12. 15. Dang, Q. F., J. Q. Yan, J. J. Li, X. J. Cheng, C. S. Liu and X. G. Chen (2011). Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydrate Polymers 83(1): 171-178. 16. Davidson, D. and F. X. Gu (2012). Materials for Sustained and Controlled Release of Nutrients and Molecules To Support Plant Growth. Journal of Agricultural and Food Chemistry 60(4): 870-876. 17. Davidson, D. W., M. S. Verma and F. X. Gu (2013). Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. SpringerPlus 2: 318. 18. Demitri, C., F. Scalera, M. Madaghiele, A. Sannino and A. Maffezzoli (2013). Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science 2013 19. Dušek, K., M. Hadhoud and M. Ilavský (1977). Correlations between the sol fraction and concentration of elastically active network chains. British Polymer Journal 9(2): 172-176. 20. Edgar, K. J., C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton and D. Tindall (2001). Advances in cellulose ester performance and application. Progress in Polymer Science 26(9): 1605-1688. 21. Ekebafe, L. O., D. E. Ogbeifun and F. E. Okieimen (2011). Polymer Applications in Agriculture. Biokemistri 23: 81-89. 22. Esposito, A., A. Sannino, A. Cozzolino, S. Nappo Quintiliano, M. Lamberti, L. Ambrosio and L. Nicolais (2005). Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26(19): 4101-4110. 23. Esposito, F., M. Del Nobile, G. Mensitieri and L. Nicolais (1996). Water sorption in cellulose‐based hydrogels. Journal of applied polymer science 60(13): 2403-2407. 24. Ferreira, L., M. M. Figueiredo, M. H. Gil and M. A. Ramos (2006). Structural analysis of dextran-based hydrogels obtained chemoenzymatically. J Biomed Mater Res B Appl Biomater 77(1): 55-64. 25. Fishel, F. (2002). Effects of Water PH on the Stability of Pesticides. 26. Fisher, A. A. (1978). Immediate and delayed allergic contact reactions to polyethylene glycol. Contact Dermatitis 4(3): 135-138. 27. Ganji, F., S. Vasheghani-Farahani and E. Vasheghani-Farahani (2010). Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5): 375-398. 28. Gonçalves, A. a. L., A. C. Fonseca, I. G. P. Fabela, J. F. J. Coelho and A. C. Serra (2016). Synthesis and characterization of high performance superabsorbent hydrogels using bis[2-( methacryloyloxy)ethyl] phosphate as crosslinker. Express Polymer Letters 10(3): 248-258. 29. González, M. G., J. C. Cabanelas and J. Baselga (2012). Applications of FTIR on epoxy resins-identification, monitoring the curing process, phase separation and water uptake. Infrared Spectroscopy-Materials Science, Engineering and Technology, InTech. 30. Guilherme, M. R., F. A. Aouada, A. R. Fajardo, A. F. Martins, A. T. Paulino, M. F. T. Davi, A. F. Rubira and E. C. Muniz (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal 72: 365-385. 31. Guilherme, M. R., A. V. Reis, S. H. Takahashi, A. F. Rubira, J. P. A. Feitosa and E. C. Muniz (2005). Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydrate Polymers 61(4): 464-471. 32. Gulrez, S. K. H., S. Al-Assaf and G. O. Phillips (2011). Hydrogels: Methods of Preparation, Characterisation and Applications. Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. A. Carpi. Rijeka, InTech: Ch. 05. 33. Guo, Liu, Zhan and L. Wu (2005). Preparation and Properties of a Slow-Release Membrane-Encapsulated Urea Fertilizer with Superabsorbent and Moisture Preservation. Industrial & Engineering Chemistry Research 44(12): 4206-4211. 34. Hoffman, A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 64, Supplement: 18-23. 35. Hollabaugh, C. B., L. H. Burt and A. P. Walsh (1945). Carboxymethylcellulose. Uses and Applications. Industrial & Engineering Chemistry 37(10): 943-947. 36. Hu, D., A. Mafi and K. C. Chou (2016). Revisiting the Thermodynamics of Water Surfaces and the Effects of Surfactant Head Group. The Journal of Physical Chemistry B 120(9): 2257-2261. 37. Hu, R. Y. Z., A. T. A. Wang and J. P. Hartnett (1991). Surface tension measurement of aqueous polymer solutions. Experimental Thermal and Fluid Science 4(6): 723-729. 38. Keppler, F., J. Fischer, T. Sattler, D. Polag, N. Jaeger, H. F. Schöler and M. Greule (2017). Chloromethane emissions in human breath. Science of The Total Environment 605: 405-410. 39. Kim, S., G. Iyer, A. Nadarajah, J. M. Frantz and A. L. Spongberg (2010). Polyacrylamide Hydrogel Properties for Horticultural Applications. International Journal of Polymer Analysis and Characterization 15(5): 307-318. 40. Kono, H. (2014). Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydrate Polymers 106: 84-93. 41. Kumar, N., M. N. V. Ravikumar and A. J. Domb (2001). Biodegradable block copolymers. Advanced Drug Delivery Reviews 53(1): 23-44. 42. Lanthong, P., R. Nuisin and S. Kiatkamjornwong (2006). Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydrate Polymers 66(2): 229-245. 43. Lee, P. I. (1985). Kinetics of Drug Release from Glassy Polymers: Effect of Initially Nonuniform Drug Distribution. Polymeric Materials in Medication. C. G. Gebelein and C. E. Carraher. Boston, MA, Springer US: 79-85. 44. Li, J., Y. Li and H. Dong (2008). Controlled Release of Herbicide Acetochlor from Clay/Carboxylmethylcellulose Gel Formulations. Journal of Agricultural and Food Chemistry 56(4): 1336-1342. 45. Li, J., J. Lu and Y. Li (2009). Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. Journal of applied polymer science 112(1): 261-268. 46. Lim, F. and A. Sun (1980). Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472): 908-910. 47. Lin, C. C. and K. S. Anseth (2009). PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical Research 26(3): 631-643. 48. Lin, Y.-C., J. Cho, G. A. Tompsett, P. R. Westmoreland and G. W. Huber (2009). Kinetics and Mechanism of Cellulose Pyrolysis. The Journal of Physical Chemistry C 113(46): 20097-20107. 49. Liu, P., J. Peng, J. Li and J. Wu (2005). Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiation Physics and Chemistry 72(5): 635-638. 50. Liu, Y., C. Cheng, R. K. Prud’homme and R. O. Fox (2008). Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science 63(11): 2829-2842. 51. Maitra, J. and V. K. Shukla (2014). Cross-linking in hydrogels-a review. American Journal of Polymer Science 4(2): 25-31. 52. Mccloskey, B. D., H. Ju and B. D. Freeman (2010). Composite Membranes Based on a Selective Chitosan−Poly(ethylene glycol) Hybrid Layer: Synthesis, Characterization, and Performance in Oil−Water Purification. Industrial & Engineering Chemistry Research 49(1): 366-373. 53. Melde, B., B. Johnson and P. Charles (2008). Mesoporous Silicate Materials in Sensing. Sensors 8(8): 5202. 54. Montesano, F. F., A. Parente, P. Santamaria, A. Sannino and F. Serio (2015). Biodegradable Superabsorbent Hydrogel IncreasesWater Retention Properties of Growing Media and Plant Growth. Agriculture and Agricultural Science Procedia 4: 451-458. 55. Moonsri, P., R. Watanesk, S. Watanesk, H. Niamsup and R. L. Deming (2008). Fibroin membrane preparation and stabilization by polyethylene glycol diglycidyl ether. Journal of applied polymer science 108(3): 1402-1406. 56. Nisar, K., J. Kumar, M. B. Arun Kumar, S. Walia, N. A. Shakil, R. Parsad and B. S. Parmar (2009). Pesticidal seed coats based on azadirachtin-A: release kinetics, storage life and performance. Pest Management Science 65(2): 175-182. 57. Parvathy, P. C., A. N. Jyothi, K. S. John and J. Sreekumar (2014). Cassava Starch Based Superabsorbent Polymer as Soil Conditioner: Impact on Soil Physico‐Chemical and Biological Properties and Plant Growth. CLEAN–Soil, Air, Water 42(11): 1610-1617. 58. Peppas, N. A., K. B. Keys, M. Torres-Lugo and A. M. Lowman (1999). Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release 62(1–2): 81-87. 59. Pourjavadi, A. and M. Kurdtabar (2007). Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics. European Polymer Journal 43(3): 877-889. 60. Raafat, A. I., M. Eid and M. B. El-Arnaouty (2012). Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 283: 71-76. 61. Rashidzadeh, A., A. Olad, D. Salari and A. Reyhanitabar (2014). On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research 21(2): 344. 62. Rideout, D. C. and R. Breslow (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society 102(26): 7816-7817. 63. Riyajan, S.-A., J. T. Sakdapipanich and Y. Tanaka (2003). Controlled degradation of cured natural rubber by encapsulated benzophenone as a photosensitizer. Journal of Applied Polymer Science 90(1): 297-305. 64. Ross, P., R. Mayer and M. Benziman (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55(1): 35-58. 65. Roy, A., J. Bajpai and A. K. Bajpai (2009). Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydrate Polymers 76(2): 222-231. 66. Roy, A., S. K. Singh, J. Bajpai and A. K. Bajpai (2014). Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry 12(4): 453-469. 67. Sannino, A., C. Demitri and M. Madaghiele (2009). Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2(2): 353. 68. Shang, J., Z. Shao and X. Chen (2008). Electrical Behavior of a Natural Polyelectrolyte Hydrogel: Chitosan/Carboxymethylcellulose Hydrogel. Biomacromolecules 9(4): 1208-1213. 69. Sharma, K., B. S. Kaith, V. Kumar, S. Kalia, V. Kumar and H. C. Swart (2014). Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232: 45-55. 70. Su, J.-F., Z. Huang, X.-Y. Yuan, X.-Y. Wang and M. Li (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers 79(1): 145-153. 71. Sutradhar, S. C., M. M. R. Khan, M. M. Rahman and N. C. Dafadar (2015). The Synthesis of Superabsorbent Polymers from a Carboxymethylcellulose/acrylic Acid Blend Using Gamma Radiation and its Application in Agriculture. Journal of Physical Science 26(2): 23. 72. Tai, L., D. Liu, L. Xu and N.-G. Si (2005). Syntheses of New Controlled Release Polymeric Fungicides Containing Diniconazole. PESTICIDES-SHENYANG- 44(7): 309. 73. Tongdeesoontorn, W., L. J. Mauer, S. Wongruong, P. Sriburi and P. Rachtanapun (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal 5(1): 6. 74. Ureña-Amate, M. D., N. D. Boutarbouch, M. D. M. Socias-Viciana and E. González-Pradas (2011). Controlled release of nitrate from hydrotalcite modified formulations. Applied Clay Science 52(4): 368-373. 75. Uskoković, V. (2008). Composites comprising cholesterol and carboxymethyl cellulose. Colloids and Surfaces B: Biointerfaces 61(2): 250-261. 76. Vijayalakshmi, V., M. Nemichandrappa, K. S. Reddy and M. Ayyanagowdar (2013). Effect of polymers on moisture retention and soil water holding capacity. Karnataka Journal of Agricultural Sciences 25(4) 77. Wang, Z., Y.-T. Cui, Z.-B. Xu and J. Qu (2008). Hot Water-Promoted Ring-Opening of Epoxides and Aziridines by Water and Other Nucleopliles. The Journal of Organic Chemistry 73(6): 2270-2274. 78. Waraich, E. A., R. Ahmad, M. Y. Ashraf, Saifullah and M. Ahmad (2011). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 61(4): 291-304. 79. Wichterle, O. and D. Lim (1960). Hydrophilic Gels for Biological Use. Nature 185(4706): 117-118. 80. Yeo, Y. and K. Park (2004). Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of pharmacal research 27(1): 1. 81. Zhang, C., M. R. Salick, T. M. Cordie, T. Ellingham, Y. Dan and L.-S. Turng (2015). Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Materials Science and Engineering: C 49: 463-471. 82. Zhang, M., X. H. Li, Y. D. Gong, N. M. Zhao and X. F. Zhang (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23(13): 2641-2648. 83. Zhao, G.-Z., Y.-Q. Liu, H.-Q. Xue and B. Zhang (2007). Study on Preparation and Fertilizer Efficiency of Slow Release Macromolecular Fertilizer for Maize. Journal of North University of China (Natural Science Edition) 2: 010. 84. Zohuriaan, M. J. and F. Shokrolahi (2004). Thermal studies on natural and modified gums. Polymer Testing 23(5): 575-579.
摘要: 本研究將羧甲基纖維素鈉(Sodium carboxymethyl cellulose, NaCMC)/聚乙二醇二縮水甘油醚(Polyethylene glycol diglycidyl ether, PEGDE)以不同重量比、反應溫度及時間製備為NaCMC/PEGDE水膠,另以NaCMC為對照組,探討製備條件對NaCMC/PEGDE水膠性質之影響,進一步最佳化材料應用於土壤保水性與肥料控制釋放。本研究分為兩部分,第一部分研究NaCMC/PEGDE水膠之製備及性質,結果顯示NaCMC/PEGDE水膠合成時採NaCMC/PEGDE重量比較低者,其黏度及表面張力較無明顯影響,然TG曲線向高溫側偏移,熱抵抗性較佳,膨潤率降低;而提高反應溫度及延長反應時間製備者之架橋密度較高,其黏度較高、表面張力較小,熱抵抗性亦提高,膨潤率降低且膨潤過程中可維持型態並提供適當機械性質;NaCMC/PEGDE水膠之凝膠分率均高於50%,NaCMC則於試驗過程中即溶解,顯示水膠之網狀結構具耐高溫水之機械性質。保水率試驗顯示,2% NaCMC所製備水膠可明顯增加保水時間。第二部份應用最佳化NaCMC/PEGDE水膠於農業應用,添加水膠可增加砂質土壤7天以上之保水時間;肥料於30 min內則釋放高於NaCMC/PEGDE水膠,NaCMC/PEGDE水膠之肥料包覆率為89.0%,所製備之控釋型肥料有緩釋行為,PEGDE比例越高緩釋越佳;控釋型肥料具pH應答性,酸性環境下(pH 5)之肥料釋放率較慢。
In this study, NaCMC/PEGDE hydrogel were synthesized by reacting NaCMC and PEGDE with different weight ratios, reaction temperature and times, and NaCMC as control. The effect of hydrogel preparation from different reaction preparation condition was investigated. Furthermore, the optimized contidion of hydrogel were applied to water retention of sandy soil and controlled release of fertilizer.The first part of this study is preparation and properties of NaCMC/PEGDE hydrogel. The results show that NaCMC/PEGDE hydrogel prepared with lower NaCMC/PEGDE weight ratio did not be influenced by viscosity and surface tension. The TG curve shifted to higher temperature side, the thermal resistance was better and swelling ratio was reduced. In addition, the structure density of NaCMC/PEGDE hydrogel prepared with higher reaction temperature and longer time was higher. The viscosity was higher but surface tention was lower, the thermal resistance was also improved. The results indicated that swelling ratio of hydrogel was lower, and the network structure could maintain the structure and provide mechanical properties. The gel fraction of all hydrogels were higher than 50%. NaCMC was dissolved during the exam, showing the structure of hydrogel had mechanical properties with hot water. The results of moisture retention indicated the hydrogel prepared from 2% NaCMC could significantly increase the water retention time.The second part was the optimized hydrogel in agricultural applications. 40 g sandy soil mixed with NaCMC/PEGDE hydrogel could improve water-retention time of sandy soil for more than 7 days. Fertilizer was higher than NaCMC/PEGDE hydrogel in 30 min. The fertilizer efficiency of the hydrogel was 89.0%. The controlled release of fertilizer had slow release behavior, and the group increasing PEGDE content possessed the best. The fertilizer release rate of NaCMC/PEGDE hydrogel in the acidic environment (pH 5) was low.
URI: http://hdl.handle.net/11455/95739
文章公開時間: 10000-01-01
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.