Please use this identifier to cite or link to this item:
標題: 印楝油基質水性聚胺基甲酸酯樹脂之物理化學性質及抑菌效能
Chemical-physical properties and antimicrobial efficacy of neem oil-based waterborne polyurethanes
作者: 蔡捷安
Chieh-An Tsai
關鍵字: 水性聚胺基甲酸酯
Waterborne polyurethane resins
Neem oil
Coating performance
Antimicrobial efficacy
引用: 1. 杜逸虹 (2013) 聚合體學。三民書局。第23–28頁。 2. 阮巽雯、游華萃、趙瑞儀、彭擁易、黃金城、夏滄琪 (2015) 水性PU塗料添加竹炭粉之物性、抗白蟻及抗微生物性能。林產工業34(1):25–34。 3. 胡銘珊、宋憶青、李文昭 (2014a) 含液化木質素水性聚胺基甲酸酯樹脂之性質。中華林學季刊47(3):297–310。 4. 胡銘珊、宋憶青、李文昭 (2014b) 含液化木質素水性PU樹脂之膠合及塗裝性能。林業研究季刊36(3):217–225。 5. 鄭雪妮 (2009) 印刷品質檢測系統開發之研究。印刷科技112:18–50。 6. Belgacem, M. N. and A. Gandini (2011) Monomers, polymers and composites from Renewable Resources. Elsevier Science, pp.39. 7. Cauich-Rodríguez J. V., L. H. Chan-Chan, F. Hernandez-Sánchez and J. M. Cervantes-Uc (2013) Degradation of polyurethanes for cardiovascular applications. InTechOpen, pp. 52–53 8. Hepburn, C. (1992) Polyurethane elastomers. Springer Netherlands. pp. 1–4 9. Mcclements, D. J. (2015) Food emulsions: principles, practices, and techniques, third edition. CRC press, pp.289-372. 10. Tadros, T. F. (2009). Emulsion science and technology: a general introduction. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp.1-56. 11. Abismaı̈L, B., J. P. Canselier, A. M. Wilhelm, H. Delmas and C. Gourdon (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry 6(1): 75-83. 12. Aransiola, E., T. Ojumu, O. Oyekola and D. Ikhu-Omoregbe (2012) A study of biodiesel production from non-edible oil seeds: a comparative study, The Open Conference Proceedings Journal 3:18-22. 13. Bakhshi, H., H. Yeganeh and S. Mehdipour-Ataei (2013a) Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups. Journal of Biomedical Materials Research Part A 101A(6): 1599-1611. 14. Bakhshi, H., H. Yeganeh, S. Mehdipour-Ataei, M. A. Shokrgozar, A. Yari and S. N. Saeedi-Eslami (2013b) Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Materials Science and Engineering: C 33(1): 153-164. 15. Banerjee, K., N. Thiagarajan and P. Thiagarajan (2016) Azadirachta indica A. Juss based emollient cream for potential dermatological applications. Indian Journal of Pharmaceutical Sciences 78(3): 320-325. 16. Bao, L. H., Y. J. Lan and S. F. Zhang (2006) Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. Journal of Polymer Research 13(6): 507-514. 17. Bhowmick, A. K. and H. Stephens (2000) Handbook of Elastomers, Second Edition. CRC Press Taylor and Francis Group. 18. Biswas, K., I. Chattopadhyay, R. K. Banerjee and U. Bandyopadhyay (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Current Science 82(11): 1336-1345. 19. Boyd, J., C. Parkinson and P. Sherman (1972) Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science 41(2): 359-370. 20. Bruinsma, G. M., H. C. Van Der Mei and H. J. Busscher (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22(24): 3217-3224. 21. Bullermann, J., S. Friebel, T. Salthammer and R. Spohnholz (2013) Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralisation. Progress in Organic Coatings 76(4): 609-615. 22. Bush, J. (2004) MIT lecture notes on surface tension. Massachusetts Institute of Technology. 23. Can, E., S. Küsefoğlu and R. P. Wool (2001) Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates. Journal of Applied Polymer Science 81(1): 69-77. 24. Cervantes-Uc, J. M., J. I. M. Espinosa, J. V. Cauich-Rodríguez, A. Ávila-Ortega, H. Vázquez-Torres, A. Marcos-Fernández and J. San Román (2009) TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polymer Degradation and Stability 94(10): 1666-1677. 25. Chang, C. W. and K. T. Lu (2013) Linseed-oil-based waterborne UV/air dual-cured wood coatings. Progress in Organic Coatings 76(7–8): 1024-1031. 26. Chang, C. W. and K. T. Lu (2017) Organic–inorganic hybrid linseed oil‐based urethane oil wood coatings. Journal of Applied Polymer Science 134(10). 27. Chaudhari, A., V. Gite, S. Rajput, P. Mahulikar and R. Kulkarni (2013a) Development of eco-friendly polyurethane coatings based on neem oil polyetheramide. Industrial Crops and Products 50: 550-556. 28. Chaudhari, A. B., A. Anand, S. D. Rajput, R. D. Kulkarni and V. V. Gite (2013b) Synthesis, characterization and application of Azadirachta indica juss (neem oil) fatty amides (AIJFA) based polyurethanes coatings: A renewable novel approach. Progress in Organic Coatings 76(12): 1779-1785. 29. Chaudhari, A. B., P. D. Tatiya, R. K. Hedaoo, R. D. Kulkarni and V. V. Gite (2013c) Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings. Industrial and Engineering Chemistry Research 52(30): 10189-10197. 30. Chaudhari, A., A. Kuwar, P. Mahulikar, D. Hundiwale, R. Kulkarni and V. Gite (2014) Development of anticorrosive two pack polyurethane coatings based on modified fatty amide of Azadirachta indica Juss oil cured at room temperature - a sustainable resource. RSC Advances 4(34): 17866-17872. 31. Chaudhari, A., R. Kulkarni, P. Mahulikar, D. Sohn and V. Gite (2015) Development of PU coatings from neem oil based alkyds prepared by the monoglyceride route. Journal of the American Oil Chemists'' Society 92(5): 733-741. 32. Chen, Y. and Y. L. Chen (1992) Aqueous dispersions of polyurethane anionomers: effects of countercation. Journal of applied polymer science 46(3): 435-443. 33. Choe, E. and D. B. Min (2006) Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety 5(4): 169-186. 34. Chung, Y.C., Y. P. Su, C. C. Chen, G. Jia, H. L. Wang, J. G. Wu and J. G. Lin (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica 25(7): 932-936. 35. Cocca, M., L. D''arienzo, L. D''orazio ,G. Gentile and E. Martuscelli (2005) Synthesis of poly(urethane urea) by in situ polymerization inside stone. Journal of Polymer Science Part B: Polymer Physics 43(5): 542-552. 36. Coutinho, F. M. B., M. C. Delpech, T. L. Alves and A. A. Ferreira (2003) Degradation profiles of cast films of polyurethane and poly(urethane-urea) aqueous dispersions based on hydroxy-terminated polybutadiene and different diisocyanates. Polymer Degradation and Stability 81(1): 19-27. 37. De Folter, J. W. J., M. W. M. Van Ruijven and K. P. Velikov (2012) Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 8(25): 6807-6815. 38. De Oliveira, P., N. De Almeida, M. Conda-Sheridan, R. D. P. Apparecido, A. C. Micheletti, N. C. Carvalho, E. D. A. Dos Santos, M. R. Marques, E. De Arruda, G. B. Alcantara, L. C. De Oliveira, D. De Lima and A. Beatriz (2017) Ozonolysis of neem oil: preparation and characterization of potent antibacterial agents against multidrug resistant bacterial strains. RSC Advances 7(55): 34356-34365. 39. Delpech, M. and G. Miranda (2012) Waterborne polyurethanes: influence of chain extender in ftir spectra profiles. Open Engineering. 2: 231. 40. Desai, S., I. M. Thakore, B. D. Sarawade and S. Devi (2000) Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal 36(4): 711-725. 41. El-Molla, M. M., K. Haggag, F. N. El-Shall and N. O. Shaker (2012) Part 1: Synthesis and evaluation of novel nano scale powdered polyurethane acrylate binders. Advances in Chemical Engineering and Science Vol.02No.02: 16. 42. Elakovich, S. D. (1996) The neem tree:  source of unique natural products for integrated pest management, medicinal, industrial, and other purposes. Journal of the American Chemical Society 118(16): 3999-4000. 43. Ferri, J. K. and K. J. Stebe (2000) Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Advances in Colloid and Interface Science 85(1): 61-97. 44. Gite, V. V., P. P. Mahulikar and D. G. Hundiwale (2010) Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Progress in Organic Coatings 68(4): 307-312. 45. Govindachari, T., G. Suresh and G. Gopalakrishnan (1995) A direct preparative high performance liquid chromatography procedure for the isolation of major triterpenoids and their quantitative determination in neem oil. Journal of Liquid Chromatography and Related Technologies 18(17): 3465-3471. 46. Govindachari, T. R., G. Suresh, G. Gopalakrishnan, B. Banumathy and S. Masilamani (1998) Identification of antifungal compounds from the seed oil of Azadirachta Indica. Phytoparasitica 26(2): 109-116. 47. Guo, A., D. Demydov, W. Zhang and Z. S. Petrovic (2002) Polyols and Polyurethanes from Hydroformylation of Soybean Oil. Journal of Polymers and the Environment 10(1): 49-52. 48. Heryanto, R., M. Hasan, E. C. Abdullah and A. C. Kumoro (2007) Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models. ScienceAsia 33: 469-472. 49. Hon, D. N. S., S. T. Chang and W. C. Feist (1985) Protection of wood surfaces against photooxidation. Journal of Applied Polymer Science 30(4): 1429-1448. 50. Huang, J. and L. Zhang (2002) Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43(8): 2287-2294. 51. Huang, X., Y. Kakuda and W. Cui (2001) Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids 15(4): 533-542. 52. Jahan, T., Z. A. Begum and S. Sultana (2007) Effect of neem oil on some pathogenic bacteria. Bangladesh Journal of Pharmacology 2(2): 71-72. 53. Javni, I., Z. S. Petrović, A. Guo and R. Fuller (2000) Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science 77(8): 1723-1734. 54. Jiao, J. and D. J. Burgess (2003) Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80. AAPS PharmSci 5(1): 62-73. 55. Khan, Y., S. K. Durrani, M. Siddique and M. Mehmood (2011) Hydrothermal synthesis of alpha Fe2O3 nanoparticles capped by Tween-80. Materials Letters 65(14): 2224-2227. 56. Kim, B. K. (1996) Aqueous polyurethane dispersions. Colloid and Polymer Science 274(7): 599-611. 57. Kim, B. K., J. W. Seo and H. M. Jeong (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. European Polymer Journal 39(1): 85-91. 58. Koul, O., M. B. Isman and C. M. Ketkar (1990). Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany 68(1): 1-11. 59. Kristoufek, L., K. Janda and D. Zilberman (2012) Relationship between prices and food, fuel and biofuel. Paper prepared for presentation at the 131st EAAE Seminar ‘Innovation for Agricultural Competitiveness and Sustainability of Rural Areas’, Prague, Czech Republic. 60. Lee, H. T. and L. H. Lin (2006) Waterborne polyurethane/clay nanocomposites:  novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39(18): 6133-6141. 61. Lin, W. T. and W. J. Lee (2017) Effects of the NCO/OH molar ratio and the silica contained on the properties of waterborne polyurethane resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects 522: 453-460. 62. Ling, J. S., I. Ahmed Mohammed, A. Ghazali and M. Khairuddean (2014) Novel poly(alkyd-urethane)s from vegetable oils: Synthesis and properties. Industrial Crops and Products 52: 74-84. 63. Liu, Y., J. Gu, J. Zhang, F. Yu, J. Wang, N. Nie and W. Li (2015) LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Advances 5(13): 9745-9751. 64. Lu, Y. and R. C. Larock (2008) Soybean-Oil-Based Waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules 9(11): 3332-3340. 65. Marathe, R., P. Tatiya, A. Chaudhari, J. Lee, P. Mahulikar, D. Sohn and V. Gite (2015) Neem acetylated polyester polyol—Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property. Industrial Crops and Products 77: 239-250. 66. Mcguire, R. G. (1992) Reporting of objective color measurements. HortScience 27(12): 1254-1255. 67. Mosiewicki, M., M. I. Aranguren and J. Borrajo (2005) Mechanical properties of linseed oil monoglyceride maleate/styrene copolymers. Journal of Applied Polymer Science 97(3): 825-836. 68. Muñoz-Bonilla, A. and M. Fernández-García (2012) Polymeric materials with antimicrobial activity. Progress in Polymer Science 37(2): 281-339. 69. Nanda, A. K. and D. A. Wicks (2006) The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer 47(6): 1805-1811. 70. Ni, B., L. Yang,C. Wang, L. Wang and D. Finlow (2010) Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. Journal of Thermal Analysis and Calorimetry 100(1): 239-246. 71. Noble, K. L. (1997) Waterborne polyurethanes. Progress in Organic Coatings 32(1–4): 131-136. 72. World Health Organization (2006) The International Pharmacopoeia, vol. 1. World Health Organization, pp.760. 73. Pathak, S. S., A. Sharma and A. S. Khanna (2009) Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Progress in Organic Coatings 65(2): 206-216. 74. Pavithra, D. and D. Mukesh (2008) Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials 3(3): 034003. 75. Petrović, Z. S., L. Yang, A. Zlatanić, W. Zhang and I. Javni (2007) Network structure and properties of polyurethanes from soybean oil. Journal of applied polymer science 105(5): 2717-2727. 76. Petrović, Z. S., W. Zhang and I. Javni (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6(2): 713-719. 77. Pfister, D. P., Y. Xia and R. C. Larock (2011) Recent advances in vegetable oil-based Polyurethanes. ChemSusChem 4(6): 703-717. 78. Princi, E., S. Vicini, K. Castro, D. Capitani, N. Proietti and L. Mannina (2009) On the micro‐phase separation in waterborne polyurethanes. Macromolecular Chemistry and Physics 210(10): 879-889. 79. Radha, K. and G. Manikandan (2011) Novel production of biofuels from neem oil. Linköping University Electronic Press, pp.471-478 80. Rouilly, A. and L. Rigal (2002) Agro-materials: a bibliographic review. Journal of Macromolecular Science, Part C 42(4): 441-479. 81. Rousseau, D. (2000) Fat crystals and emulsion stability — a review. Food Research International 33(1): 3-14. 82. Sairam, M., G. Ilavazhagan, S. K. Sharma, S. A. Dhanraj, B. Suresh, M. M. Parida, A. M. Jana, K. Devendra and W. Selvamurthy (2000) Anti-microbial activity of a new vaginal contraceptive NIM-76 from neem oil (Azadirachta indica). Journal of Ethnopharmacology 71(3): 377-382. 83. Sharma, V., S. Anandhakumar and M. Sasidharan (2015) Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Materials Science and Engineering: C 56: 393-400. 84. Srichatrapimuk, V. W. and S. L. Cooper (1978) Infrared thermal analysis of polyurethane block polymers. Journal of Macromolecular Science, Part B 15(2): 267-311. 85. Stempfle, F., B. Schemmer, A. L. Oechsle and S. Mecking (2015) Thermoplastic polyester elastomers based on long-chain crystallizable aliphatic hard segments. Polymer Chemistry 6(40): 7133-7137. 86. Tanwar, D., D. S. Ajayta and Y. Mathur (2013) Production and characterization of neem oil methyl ester. Int J Eng Res Technol 2(5): 1896-1903. 87. Williams, C. K. and M. A. Hillmyer (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polymer Reviews 48(1): 1-10. 88. Xia, Y., Z. Zhang, M. R. Kessler, B. Brehm-Stecher and R. C. Larock (2012) Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols. ChemSusChem 5(11): 2221-2227. 89. Xie, S., B. Zhang, L. Wang, J. Wang, X. Li, G. Yang and F. Gao (2015) Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Applied Surface Science 326: 32-38. 90. Xu, J., Q. J. Fan, Z. Q. Yin, X. T. Li, Y. H. Du, R. Y. Jia, K. Y. Wang, C. Lv, G. Ye, Y. Geng, G. Su, L. Zhao, T. X. Hu, F. Shi, L. Zhang, C. L. Wu, C. Tao, Y. X. Zhang and D. X. Shi (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Veterinary Parasitology 169(3–4): 399-403. 91. Yahaya Khan, M., Z. Abdul Karim, F. Y. Hagos, A. R. A. Aziz and I. M. Tan (2014) Current trends in water-in-diesel emulsion as a fuel. The Scientific world journal 2014: 1-15. 92. Zlatanić, A., C. Lava, W. Zhang and Z. S. Petrović (2004) Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. Journal of Polymer Science Part B: Polymer Physics 42(5): 809-819.
摘要: 本研究使用異佛爾酮二異氰酸酯(Isophorone diisocyanate,IPDI)與聚四亞甲基醚二醇(Polytetramethylene ether glycol,PTMG)反應製備水性PU樹脂。第一部分為使用界面活性劑聚山梨醇酯80(Tween 80)乳化印楝油(Neem oil),製備微米化印楝油並摻合於水性PU樹脂,探討不同摻合比對樹脂薄膜性質之影響。第二部分以轉酯化反應製備印楝油甘油酯(Neem oil glyceride,NOG)為多元醇原料,取代部分PTMG合成水性PU樹脂,探討不同PTMG/NOG莫耳比對薄膜性質及塗裝性質之影響,且印楝油具備抑菌活性成分,探討樹脂薄膜之抑菌性。試驗結果顯示印楝油/Tween 80重量比1/1條件微米化印楝油之微胞粒徑小、粒徑分布窄且穩定性最佳。相較於傳統水性PU樹脂薄膜,摻合微米化印楝油薄膜之浸水重量保留率、接觸角、拉伸破壞伸長率及材料熱穩定性增加,耐溶劑試驗之重量保留率、拉伸強度、楊氏模數則降低。成功以NOG取代石化多元醇合成水性PU樹脂,NOG比例增加,其樹脂液之pH、黏度及粒徑增加。PTMG/NOG莫耳比為100/0、75/25、50/50及25/75可製備為薄膜,然PTMG/NOG莫耳比0/100之薄膜呈硬脆碎裂狀態。NOG基薄膜之浸水試驗重量保留率可高於94.9%,耐溶劑試驗為88.2%以上。NOG比例增加,其薄膜之拉伸模數及紫外光吸收率增加,破壞伸長率及熱穩定性則降低。塗膜性能結果顯示,不同PTMG/NOG莫耳比之塗膜對杉木木材均有良好之附著性及耐久性,NOG比例增加,塗膜硬度提高,然延性低而耐衝擊強度及耐磨性下降。水性PU樹脂塗膜均對50%乙醇及丙酮之溶劑抵抗性最低。抑菌試驗中,印楝油對E. coli及S. aureus具有抑菌性,不同PTMG/NOG莫耳比之薄膜具有接觸型抑菌能力。以NOG合成之樹脂薄膜摻合2、4及8%微米化印楝油,增加微米化印楝油摻合比則提升抑菌性。
In this study, waterborne polyurethane (PU) resins were synthesized by reacting isophorone diisocyanate (IPDI) with polytetramethylene ether glycol (PTMG). The micronized emulsion of neem oil was prepared with the surfactant of Tween 80. In the first topic of this thesis, the effects of various neem oil/waterborne PU resins weight ratio on the waterborne PU solutions and films were studied. Secondly, the neem oil glyceride (NOG) was synthesized by a transesterification process. The NOG was used as polyol and replace partial PTMG. The effects of various PTMG/NOG molar ratios on the waterborne PU solutions, films and coatings were evaluated. Furthermore, neem oil was contained various bacteriostatic components and the antimicrobial efficacy of waterborne PU films synthesized with various PTMG/NOG molar ratios was investigated. The results showed that the micronized neem oil was prepared with 1/1 weight ratio of neem oil/Tween 80 had smaller micelles, narrower particle size distribution, and better stability than theirs of other weight ratio. With neem oil/waterborne PU resins weight ratio increasing, the weight retention of water resistance, surface hydrophilicity, elongation at break, and thermal stability of waterborne PU films increase while the weight retention of solvent resistance, tensile strength and Young''s modulus decrease. Waterborne PU resins were successfully synthesized with various PTMG/NOG molar ratios. With the content of NOG increasing, the pH, viscosity, and particle size of waterborne PU solutions increase. The films with PTMG/NOG molar ratio of 75/25, 50/50, and 25/75 were intact. On the other hands, film with PTMG/NOG molar ratio of 0/100 was broken brittle after preparation process. The weight retention of water resistance and solvent resistance of waterborne PU films with NOG was higher than 94.9% and 88.2%, respectively. With the content of NOG increasing, the Young''s modulus and ultraviolet (UV) absorption of waterborne PU films increase. However, the elongation at break and thermal stability decrease. Waterborne PU coating with various PTMG/NOG molar ratios showed good performance of adhesion and durability for wood. With the content of NOG increasing, the hardness of waterborne PU coatings increases. Nevertheless, the impact resistance and abrasion resistance decrease. NOG based waterborne PU coatings exhibited poor chemical resistance to 50% ethanol and acetone. Neem oil showed antimicrobial activity against E. coli and S. aureus. NOG based waterborne PU films exhibited contact killing activity against E. coli and S. aureus. With the content of micronized neem oil increasing, the antimicrobial efficacy of waterborne PU films containing NOG blending with micronized neem oil increases.
文章公開時間: 10000-01-01
Appears in Collections:森林學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.