請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95765
標題: 以農桿菌轉殖法研究西瓜蔓割病菌致病或毒力相關機制
Studies of pathogenicity or virulence related mechenisms of Fusarium oxysporum f. sp. niveum by Agrobacterium tumefaciens-mediated transformation method
作者: 李玟儀
Wen-Yi Li
關鍵字: Fusarium oxysporum f. sp. niveum
西瓜蔓割病
共軛焦顯微鏡
農桿菌媒介轉殖法
綠螢光蛋白
熱不對稱交錯聚合酶連鎖反應
Agrobacterium tumefaciens-mediated transformation
confocal laser scanning microscopy
Fusarium oxysporum f. sp. niveum
Fusarium wilt of watermelon
green fluorescent protein (GFP)
thermal asymmetric interlaced PCR (TAIL-PCR)
引用: 1. 林詠筑. 2014. 利用農桿菌媒介轉殖法探討辣椒炭疽病菌感染寄主之相關致病基因. 中興大學植物病理學系碩士論文. 55pp. 2. 張道禾. 2009. 苯基丙酸代謝路徑相關產物及酵素和西瓜抗蔓割病之關聯性. 中興大學植物病理學系碩士論文. 49pp. 3. 陳文郁. 1993. 台灣的西瓜. p.231-248. 台灣蔬菜產業演進四十年專集. 台灣省農業試驗所編印. 台中霧峰. 4. 陳甘澍, 張碧芳, 劉政道, 黃振文. 2003. 西瓜蔓割病菌生理小種鑑定與抗病品種之選育. 植物病理會刊 12: 247-254. 5. 寇菲. 2012. 棉花黃萎病菌T-DNA插入突變體庫的建立. 西南大學微生物學系碩士論文. 58-61pp. 6. 曾德賜. 2015. 農藥藥理與應用-殺菌劑. 藝軒出版社. 台北. 75pp. 7. 黃振文. 1978. 西瓜蔓割病菌的生物學及其防治試驗. 中興大學植物病理系碩士論文. 111pp. 8. 賀春萍, 黃志強, 吳偉懷, 鄭肖蘭, 鄭服叢. 2008. 一株西瓜尖孢鐮刀菌的致死溫度和最適碳氮營養源. 熱帶作物學報 5: 648-652. 9. Bani M, Rispail N, Evidente A, Rubiales D, Cimmino A. 2014. Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolates’ pathogenicity. Journal of Agricultural and Food Chemistry 62(12): 2574-2580. 10. Chakrabarti A, Rep M, Wang B, Ashton A, Dodds P, Ellis J. 2010. Variation in potential effector genes distinguishing Australian and non-Australian isolates of the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum. Plant Pathology 60: 232-43. 11. Day RE, Higgins VJ, Rogers PJ, Dawes IW. 2002. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19: 1015-1027. 12. Di Pietro A, García-MFI, Méglecz E, Roncero MIG. 2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology 39: 1140-1152. 13. Hanif M, Pardo AG, Gorfer M, Raudaskoski M. 2002. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Current Genetics 41: 183-188. 14. Jeon JH, Park SY, Chi MH, Choi JH, Park JS, Rho HS, Kim SN, Goh JD, Yoo SY, Choi JH, Park JY, Yi MH, Yang SY, Kwon MJ, Han SS, Kim BR and Chang HK. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genetics 39(4): 561-565. 15. Jiang H, Medintz I, Zhang B, Michels CA. 2000. Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. Journal of bacteriology 182(3): 647-54. 16. Lagopodi AL, Ram AF, Lamers GE, Punt PJ, Van den Hondel CA, Lugtenberg BJ, Bloemberg GV. 2002. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Molecular Plant-Microbe Interactions 15:172-179. 17. Liu YG, Mitsukawa N, Oosumi T, Whittier R F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal 8: 457-463. 18. Lü G, Guo S, Zhang H, Geng L, Martyn RD, Xu Y. 2014. Colonization of Fusarium wilt-resistant and susceptible watermelon roots by a green-fluorescent-protein-tagged isolate of Fusarium oxysporum f. sp. niveum. Journal of Phytopathology 162: 228-237. 19. Martyn RD and Netzer D. 1991. Resistance to races 0, 1 and 2 of Fusarium wilt of watermelon in Citrullus sp. PI296341-FR. HortScience 26: 429-432. 20. Maruthachalam K, Klosterman SJ, Kang S, Hayes RJ, Subbarao KV. 2011. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Molecular Biotechnology 49: 209-221. 21. Meldrum R A, Fraser-Smith S, Tran-Nguyen LTT, Daly AM, Aitken EA. 2012. Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australas Plant Pathology 41: 551-557. 22. Michielse CB, Wijk RV, Reijnen L, Cornelissen BJ, Rep M. 2009. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biology 10(4): 1-18. 23. Michielse CB and Rep M. 2009. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10: 311-324. 24. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91(2): 173-180. 25. Nakanishi T and Oku H. 1969. Metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi in relation to selective toxicity. Phytopathology 59: 1761-1762. 26. Nash SM and Snyder WC. 1962. Quantitative estimations by plate counts of propagules of the Bean root rot Fusarium in field soils. Phytopathology 52: 567-572. 27. Niu X, Zhao X, Ling KS, Levi A, Sun YY, Fan M. 2016. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem. Scientific Reports 6(28146): 1-7. 28. Ospina-Giraldo MD, Mullins E, Kang S. 2003. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Current Genetics 44(1): 49-57. 29. Palecek SP, Parikh AS, Huh JH, Kron SJ. 2002. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Molecular Microbiology 45(2): 453-469. 30. Rep M, van der Does HC, Meijer M, Wijk R, Houterman PM, Dekker HL, de Koster CG, and Cornelissen BJ. 2004. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology 53(5): 1373-1383. 31. Schmidt S M, Houterman PM, Schreiver IML, Amyotte S, Chellappan B, Boeren S, Takken F LW, and Rep M. 2013. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14(119): 1-21. 32. Serrano R. 1977. Energy requirements for maltose transport in yeast. The Federation of European Biochemical Societies Journal 80(1): 97-102. 33. S?rensen LQ, Lys?e E, Larsen JE, Jamal PK, Nielsen KF, and Normand RJ. 2014. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Molecular Biology 15:1-15. 34. Tonukari NJ, Scott-Craig JS, Waltonb JD. 2000.The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. The Plant Cell 12(2): 237-247. 35. Yu M, Yu J, Hu J, Huang L, Wang Y, Yin X, Nie Y, Meng X, Wang W, Liu Y. 2015. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genetics and Biology 76: 10-19. 36. Zhang Z, Zhang J, Wang Y, Zheng X. 2005. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiology Letters 249: 39-47. 37. Zhang M., Xu JH, Liu G, Ya XF, Li PF, Yang XP. 2015a. Characterization of the watermelon seedling infection process by Fusarium oxysporum f. sp. niveum. Plant Pathology 64: 1076-1084. 38. Zhang CY, Bai XW, Lin X, Liu XE, Xiao DG. 2015b. Effects of SNF1 on maltose metabolism and leavening ability of baker''s yeast in lean dough. Journal of Food Science 80: M2879-M2885. 39. Zhao Z, Liu H, Wang C, Xu JR. 2013. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 15: 6-22. 40. Zhou XG and Everts KL. 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing fusarium wilt in watermelon. Plant Disease 94: 92-98.
摘要: 西瓜為台灣地區重要的葫蘆科作物。Fusarium oxysporum f. sp. niveum (Fon)所引起的西瓜蔓割病是西瓜生長期影響最大的真菌病害之一,對西瓜產量造成極大的損失。西瓜蔓割病(Fusarium wilt of watermelon)為土壤傳播型病害,西瓜蔓割病菌可經由種子帶菌或土壤中殘存的孢子發芽侵入植株根莖組織,切開罹病植株的維管束可見明顯褐化病徵,致使植株萎凋死亡,其厚膜孢子可在土壤中殘存數年仍可發芽,嚴重影響西瓜連作地區的產量。本研究將西瓜蔓割病菌Fon H0103 菌株以農桿菌轉殖法(Agrobacterium tumefaciens-mediated transformation)獲得帶有綠螢光蛋白(green fluorescent protein)基因插入的Fon轉殖菌株共30株,在經過接種測試後,得知轉殖菌株Fon-Y1對藍寶(Grand Baby)西瓜的致病能力幾乎喪失,其他轉殖菌株的致病能力則與H0103野生型菌株相近(共25株轉殖菌株)或毒力稍微降低(共四株轉殖菌株)或上升(僅有一株轉殖菌株)。所有轉殖菌株在產孢能力上與H0103野生型菌株並無明顯差異,惟Fon-Y1轉殖菌株在半糖馬鈴薯葡萄糖瓊脂平板(potato dextrose agar, PDA)培養基上之氣生菌絲生長減少且色素沉積減少。利用共軛焦顯微鏡觀察極低毒力的Fon-Y1轉殖菌株和與H0103野生型菌株毒力相近之Fon-X3轉殖菌株於感病品種蜜寶西瓜(Sugar Baby, SB)與抗病品系JSB西瓜根部之侵入感染情形,得知兩轉殖菌株在接種後第一天的發芽與侵入能力在SB與JSB西瓜根部皆無明顯差異,接種後第三天即可見到Fon-X3菌絲進入SB維管束中柱進行快速纏據,而Fon-Y1菌絲侵入速度較慢;Fon-X3菌株於接種後第八天即可在SB西瓜根部觀察到產孢構造形成,但是Fon-Y1菌株在接種後第十二天仍無法觀察到產孢現象,也無法如同Fon-X3轉殖菌株一般形成濃密的菌絲網,不過,在SB西瓜的莖基部都有觀察到此二轉殖菌株的纏據。此外,Fon-X3與Fon-Y1轉殖菌株在侵入感染JSB西瓜根部的速度較感染SB西瓜根部為慢,二轉殖菌株在JSB西瓜根部只會沿著維管束方向生長,並且都不會形成濃密的菌絲網,在接種後第十二天也無法觀察到產孢現象,更不會感染到JSB西瓜的莖基部。以南方墨點法確認Fon-Y1轉殖菌株只有一個T-DNA插入位點,進一步利用熱不對稱交錯聚合酶連鎖反應(thermal asymmetric interlaced PCR, TAIL-PCR)分析Fon-Y1轉殖菌株的T-DNA插入點之鄰近序列,經核酸序列比對後,得知其與番茄萎凋病菌F. oxysporum f. sp. lycopersici 4287 菌株的一個未定性蛋白(hypothetical protein) 之基因序列相似,其DNA序列相同度為99%,而此F. oxysporum f. sp. lycopersici 4287 菌株的未定性蛋白序列與Purpureocillium lilacinum 真菌之MFS maltose permease partial mRNA (XM_018323113.1)的DNA序列相同度為67%,又與Metarhizium majus ARSEF 297 菌株之MFS maltose permease partial mRNA (XM_014724167.1)的DNA序列相同度為65%,因此推測此未定性蛋白可能是麥芽糖通透酶。由碳氮素源生長測試結果顯示,轉殖菌株Fon-Y1在分別含有半乳糖和尿素的Czapek氏培養基上的生長勢較差,推論其可能是T-DNA插入使其無法有效利用半乳糖和尿素作為其碳氮素營養源。病原菌和寄主植物之間的交互作用機制複雜,未來可透過基因剔除的轉殖菌株深入研究此基因的功能。
URI: http://hdl.handle.net/11455/95765
文章公開時間: 10000-01-01
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104035201-1.pdf4.08 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。