請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95767
標題: 稠李鏈黴菌PMS-702製劑防治胡瓜露菌病的功效
Efficacy of a biocontrol product of Streptomyces padanus PMS-702 for controlling cucumber downy mildew
作者: 范雅婷
Ya-Ting Fan
關鍵字: 胡瓜露菌病
稠李鏈黴菌PMS-702
治黴色基素
椰子油
cucumber downy mildew
Streptomyces padanus PMS-702
fungichromin
coconut oil
引用: 王毓華、林子凱、林照能。2011。農業環境變遷對葫蘆科蔬菜育種與栽培技術之挑戰。因應氣候變遷作物育種及生產環境管理研討會專刊:153-161。農業試驗所出版。臺中。 石信德。2003。鏈黴菌PMS-702防治作物病害的功效與其抑菌主要代謝物治黴 色基素之鑑定。國立中興大學植物病理學系博士論文。 石信德、黃振文。2010。鏈黴菌生物製劑之應用潛力。農業生技產業季刊第24 期:38-46。 行政院農業委員會。2016。中華民國104年糧食供需年報。行政院農業委員會 出版。台北。98頁。 吳信諺。2006。應用液態培養Streptomyces padanus PMS-702生產Fungichromin-油脂及界面活性劑添加效應之探討。國立中興大學化學工程學系碩士論文。 林偉誠。2003。應用Streptomyces padanus PMS-702生產Fungichromin最適化培養條件之探討。國立中興大學化學工程學系碩士論文。 邱柏皓。2014。非農藥資材防治胡瓜露菌病之研究試驗。國立中興大學植物病理學系碩士論文。 洪爭坊。2004。小星辰花苗炭疽病菌之生物特性及防治。國立中興大學植物病理學系碩士論文。 陳立祥、鄭奇煒、陳瑞祥、蔡竹固。2006。利用核糖體核酸內轉錄間隔區鑑別二種露菌病菌。植保會刊48:53-64。 陳佑瑞。2008。應用氣舉式發酵槽於Streptomyces padanus PMS-702生產Fungichromin之研究。國立中興大學化學工程學系碩士論文。 謝明憲。2001。花胡瓜設施栽培。台南區農業專訊第35期:4-10。台南區農業改良場。 Baginski, M., Czub, J., and Sternal, K. 2006. Interaction of amphotericin B and its selected derivatives with membranes: molecular modeling studies. The Chemical Record 6: 320-332. Brock, T. D. 1956. The effect of oils and fatty acids on the production of filipin. Appl. Microbiol. 4(3): 131. Chen, Y. Y., Chen, P. C., and Tsay, T. T. 2016. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol. Control 98: 34-42. Cohen, Y. 2015. The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of Pseudoperonospora cubensis-causal agent of cucurbit downy mildew. PloS one. 10(10): e0140015. Doria, R. G. S., Freitas, S. H., Linardi, R. L., Mendonca, F. D., Arruda, L. P., Boabaid, F. M., and Valadao, C. A. A. 2012. Treatment of pythiosis in equine limbs using intravenous regional perfusion of amphotericin B. Vet Surg. 41: 759-765. Exley, R. R., Butterfield, B. G., and Meylan, B. A. 1974. Preparation of wood specimens for the scanning electron microscope. J. Microsc. 101: 21-30. Haggag, W. M. 2002. Application of epidermal coating antitranspirants for controlling cucumber downy mildew in greenhouse. Plant Pathol. Bull. 11(2): 69-78. Hausbeck, M. 2009. Downy mildew and Phytophthora control in vine crops. 2009. Empire State Fruit and Vegetable Crops Expo: 193-195. Heaney, S., Hall, A., Davies, S., and Olaya, G. 2000. Resistance to fungicides in the QoI-STAR cross-resistance group: current perspectives. Pages 755-762 in: Brighton Crop Protection Conference: Pests and Diseases, Vol. 2. Brighton, UK: British Crop Protection Council. Holmes, G., Main, C., and Keever III, Z. 2004. Cucurbit downy mildew: a unique pathosystem for disease forecasting. Advances in Downy Mildew Research 2: 69-80. Holmes, G. and Thomas, C. 2006. The history and re-emergence of cucurbit downy mildew. Phytopathology 99:S171. (Abstr.) Huang, J. W., Shih, H. D., Huang, H. C., and Chung, W. C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can. J. Plant Pathol. 29(3): 261-267. Jenkins Jr, S. F., and Wehner, T. C. 1983. A system for the measurement of foliar diseases in cucumbers. Cucurbit Genet. Coop. Rpt. 6: 10-12. Martin, J. F., and McDaniel, L. E. 1977. Production of polyene macrolide antibiotics. Adv. Appl. Microbiol. 21: 1-52. Michereff, S. J., Noronha, M. A., Lima, G. S., Albert, Í. C., Melo, E. A. and Gusmão, L. O. 2009. Diagrammatic scale to assess downy mildew severity in melon. Hort. Bras. 27(1): 76-79. Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology 101(7): 805-818. Palti, J. and Cohen, Y. 1980. Downy mildew of cucurbits (Pseudoperonospora cubensis): The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8: 109-147. Quesada-Ocampo, L. M., Granke, L. L., Olsen, J., Gutting, H. C., Runge, F., Thines, M., and Hausbeck, M. K. 2012. The genetic structure of Pseudoperonospora cubensis populations. Plant Dis. 96(10): 1459-1470. Reuveni, M., Eyal, H., and Cohen, Y. 1980. Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Dis. 64:1108-1109. Russell, P. 2002. Sensitivity Baselines in Fungicide Resistance Research and Management. Crop Life International, Brussels. 60pp. Ruzin, S. E. 1999. Plant Microtechnique and Microscopy. New York: Oxford University Press, NY, U.S.A. 322pp. Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., and Day, B. 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol. 12: 217-226. Shih, H. D., Liu, Y. C., Hsu, F. L., Mulabagal, V., Dodda, R., and Huang, J. W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J. Agric. Food Chem. 51(1): 95-99. Tamura, S., Park, Y. S., Okabe, M., Seriu, Y., and Takeda, S. 1996. Efficient tylosin production from Streptomyces fradiae using rapeseed oil. J. Ferment. Bioeng. 82:183-186. Thomas, C., and Jourdain, E. 1992. Host effect on selection of virulence factors affecting sporulation by Pseudoperonospora cubensis. Plant Dis. 76: 905-907. Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., and Morra, M. J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68(5): 2161-2171. Winston, P. W., Bates, D. H. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41(1): 232-237. Wu, J. Y., Huang, J. W., Shih, H. D., Lin, W. C., and Liu, Y. C. 2008. Optimization of cultivation conditions for fungichromin production from Streptomyces padanus PMS-702. J. Chin. Inst. Chem. Eng. 39(1): 67-73. Yuan, W. M., and Crawford, D. L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61(8): 3119-3128. Zang, C.Z., Chang, Y.N., Chen, H.B., Wu, J.Y., Chen, C.I., Huang, J.W., Shih, H.D., and Liu, Y.C. 2011. Deciphering the roles of fatty acids and oils in fungichromin enhancement from Streptomyces padanus. J. Taiwan Inst. Chem. Eng. 42:413-418. Zitter, T. A., Hopkins, D. L. and Thomas, C. E. 1996. Compendium of Cucurbit Diseases, pp. 25-27. American Phytopathological Society Press, St. Paul, MN, U.S.A.
摘要: 由Pseudoperonospora cubensis (Berk. et Curt.) Rostov.引起之胡瓜露菌病曾於世界各地造成嚴重經濟損失,為葫蘆科作物重要的葉部病害之一,目前防治胡瓜露菌病的主要方法為使用殺菌劑及種植抗病品種,但隨著抗藥性菌系出現及抗病品種之抗病性逐漸下降,研發替代的防治策略為當前努力的重要方向。近年來,利用微生物防治植物病害已成為重要趨勢,如鏈黴菌屬、芽孢桿菌屬及木黴菌屬等微生物可研製成生物製劑,其中鏈黴菌屬Streptomyces padanus PMS-702之培養濾液可有效防治Rhizoctonia solani AG-4引起之甘藍立枯病以及Phytophthora infestans造成之番茄晚疫病,而S. padanus PMS-702產生的治黴色基素(fungichromin)是主要的抑菌成分。本研究的目的在於利用S. padanus PMS-702研製適合施用於胡瓜的製劑配方,以防治胡瓜露菌病的發生。首先,將PMS-702菌株以黃豆葡萄糖培養液震盪培養五天,稀釋10倍後之PMS-702醱酵液可抑制胡瓜露菌病菌的孢囊發芽,其中治黴色基素之最低抑菌濃度為10 mg/L。在黃豆葡萄糖培養液中添加1% (v/v) 椰子油後,用於培養S. padanus PMS-702達120小時之SMG-C-1醱酵液,可使治黴色基素產量從68 mg/L提升到1418 mg/L。此外,在改良黃豆葡萄糖培養液中添加1% (v/v) 椰子油後,培養S. padanus PMS-702至第3天時,將附著於瓶壁之菌體刮下繼續培養至第5天之SMG-C-2醱酵液,則可使治黴色基素產量進一步提升到1999 mg/L。SMG-C-2醱酵液之200倍稀釋液對露菌孢囊有90%以上之抑制發芽率,點滴處理於胡瓜切離葉後可完全抑制露菌病的發生。在SMG-C-2醱酵液中添加不同濃度之tween 80作為展著劑,結果顯示SMG-C-2醱酵液在添加2% tween 80後之100倍稀釋液噴灑於切離葉或溫室中胡瓜植株葉片,然後分別接種P. cubensis PC51及PC52,可使罹病度從62%顯著降低至25%以下,有效減少胡瓜露菌病的發生。此外,在接種胡瓜露菌前24小時及接種同時施用SMG-C-2醱酵液與2% tween 80之100倍混合液,其防治胡瓜露菌病的功效優於接種後施用。
Cucumber downy mildew caused by Pseudoperonospora cubensis (Berk. et Curt.) Rostov. is one of the most important foliar diseases of cucurbits. The disease is responsible for devastating losses of cucumber worldwide. Currently, the major control methods include: applying chemical fungicides and using host resistance. In order to reduce the occurrence of fungicide-resistant P. cubensis population and increase host resistance, our goals are aimed at developing alternative measures to control cucumber downy mildew. Recently, biological control has become an important approach to manage plant diseases. Many microorganisms such as Streptomyces spp., Bacillus spp. and Trichoderma spp. have been utilized as biocontrol agents. Among them, Streptomyces spp. has been shown to suppress plant diseases caused by various fungal pathogens. Streptomyces padanus PMS-702 cultural filtrates were effective in controlling cabbage damping-off caused by Rhizoctonia solani AG-4 and tomato late blight caused by Phytophthora infestans. The major active ingredient produced by S. padanus PMS-702 was identified as fungichromin, a polyene macrolide compound. The objectives of this study were to evaluate the effects of S. padanus PMS-702 on suppressing P. cubensis and to develop a formulation of PMS-702 with different plant oils and adjuvants for effectively controlling cucumber downy mildew. In my studies, PMS-702 cultural broth had strong inhibitory effects on sporangial germination of P. cubensis PC52 at 10-fold dilution. The minimum inhibitory concentration of fungichromin produced by S. padanus PMS-702 against P. cubensis PC52 was found to be at 10 mg/L. After adding 1% (v/v) coconut oil into soybean meal-glucose broth when culturing S. padanus PMS-702, the amount of fungichromin was increased from 68 mg/L to 1418 mg/L. Using modified soybean meal-glucose broth to culture S. padanus PMS-702 for 5 days and mixed with sticky substance on the wall of erlenmeyer flask scrapped off at the 3rd day (named SMG-C-2 cultural broth) could further increase the yield of fungichromin to 1999 mg/L. When sporangia of P. cubensis PC52 were treated with 200- fold dilution of cultural broth of S. padanus PMS-702 grown in SMG C-2, over 90% of sporangia failed to geminate. Cucumber detached leaves were inoculated with P. cubensis PC52 and dripped with 200- fold dilution of cultural broth of S. padanus PMS-702 grown in SMG C-2 for 5 days. The results indicated that cucumber downy mildew on detached leaves could be completely controlled. Further, different concentrations of tween 80 were added into SMG-C-2 cultural broth, and then diluted to 100-fold for spraying on cucumber leaves. The results showed that SMG-C-2 cultural broth amended with 2% (v/v) tween 80 at 100-fold dilution could significantly reduce disease severity from 62% to 25% on detached leaves and cucumber plants caused by P. cubensis PC51 and PC52, respectively. Additionally, spraying the mixture at 100-fold dilution on cucumber detached leaves 24 hours before inoculation with P. cubensis PC52 or at the same time, showed better efficacy on controlling cucumber downy mildew than spraying it after inoculation.
URI: http://hdl.handle.net/11455/95767
文章公開時間: 2020-08-22
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104035109-1.pdf3 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。