請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95773
標題: 鑑定來自兩個對殺線蟲劑感受性不同之水稻葉芽線蟲的乙醯膽鹼酯酶基因
Cloning three acetylcholinesterase genes from two Aphelenchoides besseyi with different nematicide-susceptibilities
作者: 徐榮愷
Jung-Kai Hsu
關鍵字: 水稻葉芽線蟲
乙醯膽鹼酯酶
乙醯膽鹼酯酶抑制劑
藥劑感受性
Aphelenchoides besseyi
acetylcholinesterase
acetylcholinesterase inhibitors
nematicide-susceptibility
引用: Ardelli, B. F. 2013. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitology International 62:639-646. Balabanidou, V., Kampouraki, A., MacLean, M., Blomquist, G. J., Tittiger, C., Juarez, M. P., Mijailovsky S. J., Chalepakis, G., Anthousi, A., Lynd, A., Antoine, S., Hemingway, J., Ranson, H., Lycett, G. J., and Vontas, J. 2016. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proceedings of the National Academy of Sciences 113(33):9268-9273. Barrere, V., Alvarez, L., Suarez, G., Ceballos, L., Moreno, L., Lanusse, C., and Prichard, R. K. 2012. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus. Veterinary Parasitology 186: 344-349. Casida, J. E. and Durkin, K. A. 2013. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annual Review of Entomology 58:99-117. Chen, Q., Li, D., Wang, F., Zhang, R., and Lin, Y. 2017. Trehalose metabolism genes of Aphelenchoides besseyi (Nematoda: Aphelenchoididae) in hypertonic osmotic pressure survival. Biology Open 6: 664-672. Clements J., Schoville S., Peterson N,. Lan Q., Groves R.L. 2016. Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin. PLoS ONE 11 (1): e0147844. Clements, J., Schoville, S., Peterson, N., Huseth, A. S., Lan, Q., and Groves, R. L. 2017. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology 135: 35–40. Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, Tamara D., Bondzic, A. M., and Vasic, V. M. 2013. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology 11:315-335. Cui, R., Zhang, Z., Chen, Y., Huang, W., Fan, C., Wu, Q., Peng, D., Silva, W. D., and Sun, X. 2017. Expression and evolutionary analyses of three acetylcholinesterase genes (Mi-ace-1, Mi-ace-2, Mi-ace-3) in the root-knot nematode Meloidogyne incognita. Experimental Parasitology 176: 75e81. Cvilink, V., Lamka, J., and Skalova, L. 2009. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metabolism Reviews 41(1):8-26. Dai, S. M., Chang, C., and Huang, X. Y. 2015. Distinct contributions of A314S and novel R667Q substitutions of acetylcholinesterase 1 to carbofuran resistance of Chilo suppressalis Walker. Pest Management Science 72(7): 1421-1426. David, J.P., Ismail, H. M., Chandor-Proust, A., and Paine, M. J. I. 2013. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philosophical Transactions of the Royal Society B 368: 20120429 De Boer, J., Yan, Y., Smant, G., Davis, E., and Baum, T. 1998. In-situ hybridization to messenger RNA in Heterodera glycines. Journal of Nematology 30(3):309. Erkut, C., Vasilj, A., Boland, S., Habermann, B., Shevchenko, A., and Kurzchalia, T. V. 2013. Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation. PLoS ONE 8(12): e82473. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. Heckel, D.G. 2012. Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology 104:103–110. Hotelier, T., Negre, V., Marchot, P., and Chatonnet, A. 2010. Insecticide resistance through mutations in cholinesterases or carboxylesterases: data mining in the ESTHER database. Journal of Pesticide Science 35(3):315–320. Hsieh S. H., Lin C. J., and Chen P. C. 2012. Sexual Compatibility among Different Host-Originated Isolates of Aphelenchoides besseyi and the Inheritance of the Parasitism. PLoS ONE 7(7): e40886. Huang, W. K., Wu, Q. S., Peng, H., Kong, L. A., Liu, S. M., Yin, H. Q., Cui, R. Q., Zhan, L. P., Cui, J. K., and Peng, D. L. 2016. Mutations in Acetylcholinesterase 2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita. Scientific Reports 6: 38102. Kang, J. S., Lee, D. W., Koh, Y. H., and Lee, S. H. 2011. A soluble acetylcholinesterase provides chemical defense against xenobiotics in the pinewood nematode. PLoS One 6: e19063. Kang, J. S., Lee, D. W., Choi, J. Y., Je, Y. H., Koh, Y. H., and Lee S. H. 2011. Three acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus: Insights into distinct physiological functions. Molecular & Biochemical Parasitology 175: 154–161. Khan, H. A. A., Akram, W., Iqbal, J., and Naeem-Ullah, U. 2015. Thiamethoxam Resistance in the House Fly, Musca domestica L.: Current Status, Resistance Selection, Cross-Resistance Potential and Possible Biochemical Mechanisms. PLoS ONE 10(5): e0125850. Kikuchi, T., Cock, P. J. A., Helder, J., Jones, J. T., 2014. Characterisation of the transcriptome of Aphelenchoides besseyi and identification of a GHF 45 cellulase. Nematology 16: 99-107. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33:1870-1874. Kyndt, T., Fernandez, D. and Gheysen, G. 2014. Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annual Review of Phytopathology 52:135-153. Le, S.Q. and Gascuel, O. 2008. An Improved General Amino Acid Replacement Matrix. Molecular Biology and Evolution 25(7):1307-1320. Li, B., Wang, Y. H., Liu, H. T., Xu, Y. X., Wei, Z. G., Chen, Y. H., and Shen, W. D. 2010. Genotyping of acetylcholinesterase in insects. Pesticide Biochemistry and Physiology 98: 19–25. Lilley, C.J., Kyndt, T. and Gheysen, G. 2011. Nematode resistant GM crops in industrialised and developing countries. In: Genomics and Molecular Genetics of Plant–Nematode Interactions (Jones, J.T., Gheysen, G. and Fenoll, C., eds), pp. 517–541. Heidelberg: Springer. Netherlands. Lin, H. C., Chen, P. C., Tsay, T. T. 2004. The Susceptibilty of Meloidogyne Incognita to Nematicides in Fields. Plant Pathology Bullentin 13: 335-338. Lokeshwari, D., Kumar, N. K. K., and Manjunatha, H. 2016. Multiple Mutations on the Second Acetylcholinesterase Gene Associated With Dimethoate Resistance in the Melon Aphid, Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology 109(2): 887–897. Massoulie, J., Anselment, A., Bon, S., Krejci, E., legay, C., Morel, N., and Simon, S. 1999. The polymorphism of acetylcholinedterase: post-translational processing, quaternary association and localization, Chemico-Biological Interactions 119: 29–42. Nikou, D., Ranson, H., and Hemingway, J. 2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318:91-102. Pavlidi, N., Tseliou, V., Riga, M., Nauen, R., Leeuwen, T. V., Labrou, N. E., and Vontas, J. 2015. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pesticide Biochemistry and Physiology 121:53-60. Pavlidi, N., Khalighi, M., Myridakis, A., Dermauw, W., Wybouw, N., Tsakireli, D., Stephanou, E. G., Labrou, N. E., Vontas, J., and Leeuwen, T. V. 2017. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochemistry and Molecular Biology 80 : 101-115. Pittendrigh, B. R., Margam, V. M., Walters, K. R., Steele, L. D., Olds, B. P., Sun, L., Huesing, J., Lee, S. H., and Clark, J. M. 2014. Understanding Resistance and Induced Responses of Insects to Xenobiotics and Insecticides in the Age of “Omics” and Systems Biology. In: Insect Resistance Management (Second Edition) Biology, Economics, and Prediction(David W. Onstad, ed), pp.64-107. USA: Elsevier. Robertson, L., Diez-Rojo, M. A., Lopez-Perez, J. Z., Piedra Buena, A., Escuer, M., Lopez Cepero, J., Martinez, C., and Bello, A. 2009. New Host Races of Meloidogyne arenaria, M. incognita, and M. javanica from Horticultural Regions of Spain. Plant Disease 93: 180-184. Rodelsperger, C., Neher, R. A., Weller, A. M., Eberhardt, G., Witte, H., Mayer, W. E., Dieterich, C., and Sommer, R. J. 2014. Characterization of Genetic Diversity in the Nematode Pristionchus pacificus from Population-Scale Resequencing Data. Genetics 196:1153–1165 Roditakis, E., Steinbach, D., Moritz, G., Vasakis, E., Stavrakaki, M., Ilias, A., Garcia-Vidal, L., Martinez-Aguirre, M. D. R., Bielza, P., Morou, E., Silva, J. E., Silva, W. M., Siqueira, H. A. A., Iqbal, S., Troczka, B. J., Williamson, M. S., Bass, C., Tsagkarakou, A., Vontas, J., and Nauen, R. 2017. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochemistry and Molecular Biology 80:11-20. Russell, R. J., Claudianos, C., Campbell, P. M., Horne, I., Sutherland, T. D., and Oakeshott, J. G. 2004. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology 79:84-93. Safi, N. H. Z., Ahmadi, A. A., Nahzat, S., Ziapour, S. P., Nikookar, S. H., Fazeli-Dinan, M., Enayati, A., and Hemingway, J. 2017. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malaria Journal 16: 100. Selkirk, M. Y., Lazari, O., Hussein, A. S., and Matthews, J. B. 2005. Nematode acetylcholinesterases are encoded by multiple genes and perform non-overlapping functions. Chemico-Biological Interactions 157–158: 263–268. Silva, R. A. and Inomoto, M. M. 2002. Host-range Characterization of Two Pratylenchus coffeae lsolates from Brazil. Journal of Nematology 34: 135-139 Soreq, H. and Seidman, S. 2001. Acetylcholinesterase — new roles for an old actor. Nature Reviews Neuroscience 2:294-302. Sparks, T. C. and Nauen, R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology 121:122-128. Syvanen, A. C. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics 2:930-942. Tsay, T. T. 1999. Chemical control of plant-parasitic nematodes. Plant Pathology Bullentin 8: 41-50. Turcotte, M. M., Lochab, A. K., Turley, N. E., and Johnson, M. T. J. 2015. Plant domestication slows pest evolution. Ecology Letters 18 (9): 907-915. Tzeng, C. Y., and Lin, Y. Y. 2005. The Intraspecific Variation of Aphelenchoides besseyi Populations in Taiwan. Plant Pathology Bullentin 14: 67-75 Wang, F., Li, D., Wang, Z., Dong, A., Liu, L., Wang, B. Chen, Q., and Liu, X. 2014. Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS ONE 9(3): e91591. Webster, R. K., and Gunnell, P. S. 1992. Compendium of Rice Diseases. APS Press. 62 pp. The American Phytopathological Society, St. Paul, Minnesota. Wharton, D. A., Petrone, L., Duncan, A., and McQuillan, A. J. 2008. A surface lipid may control the permeability slump associated with entry into anhydrobiosis in the plant parasitic nematode Ditylenchus dipsaci. The Journal of Experimental Biology 211: 2901-2908. Yamashita, T. T., and Viglierchio, D. R. 1987. Field resistance to nonfumigant nematicides in Xphinema index and Meloidogyne incognita. Revue Nematol. 10(3):327-332. Yu, P. C., and Tsay, T. T. 2004. Occurrence of a Foliar Nematode Disease of Fern in Taiwan. Plant Pathology Bullentin 13: 35-44. Zhao, M., Dong, Y., Ran, X., Wu, Z., Guo, X., Zhang, Y., Xing, D., Yan, T., Wang, G., Zhu, X., Zhang, H., Li, C., and Zhao, T. 2014. Point Mutations Associated with Organophosphate and Carbamate Resistance in Chinese Strains of Culex pipiens quinquefasciatus (Diptera: Culicidae). PLoS ONE 9(5): e95260.
摘要: 水稻葉芽線蟲 (Aphelenchoides besseyi)之Fm與Rl兩品系依序分別分離自鳥巢蕨與水稻,為兩不同門 (Phylum)的寄主植物,原生環境有極大的差異,且寄主範圍、生殖模式亦不同。在前人研究中發現兩品系多個寄生相關基因亦存在差異性,因此兩者雖為同種,但在演化上已產生分歧,可認定兩者正在分化的進程中。本研究鑑定兩者的保守基因乙醯膽鹼酯酶基因 (Ace),得知在A. besseyi上共有三種Ace基因,包含Ace-1、 Ace-2 及 Ace-3。Fm與Rl的Ace-1基因可轉譯出628胺基酸 (a.a.)的蛋白序列;Ace-2基因則可分依序別轉譯出635 a.a.和500 a.a.的蛋白序列;Ace-3基因可轉譯出628 a.a.的蛋白序列,經過序列比對Fm與Rl兩品系的同一種乙醯膽鹼酯酶,發現三者皆存在差異性,其中以AChE2差異最大。乙醯膽鹼酯酶 (AChE)為有機磷劑與胺基甲酸鹽類殺線蟲劑的作用標的,屬於乙醯膽鹼酯酶抑制劑,為常見的殺蟲劑。昆蟲方面的研究顯示對乙醯膽鹼酯酶抑制劑類藥劑產生抗藥性的機制以作用點對藥劑敏感度下降為主,而導致作用點對藥劑敏感度下降的主要原因為單核苷酸多態性Single nucleotide polymorphisms (SNPs)。因Fm與Rl兩品系之乙醯膽鹼酯酶已知有差異,為探討差異是否與對乙醯膽鹼酯酶抑制劑這類殺線蟲劑的感受性之間有相關性,再以芬滅松、加保扶及毆殺滅處理線蟲後計算其致死率。三種藥劑分別對Fm之半數致死濃度依序分別為103.6 ppm、226.7 ppm及116.2 ppm;而Rl則依序分別為167.2 ppm、2087.2 ppm及1166.7 ppm,顯示兩品系對乙醯膽鹼酯酶抑制劑類藥劑之感受性具顯著差異。以原位雜合法得知在Fm上Ace-1與Ace-2表現於體壁肌肉、食道部及生殖腺體,Ace-3則表現於食道部,前人研究已知Bursaphelenchus xylophilus與Caenorhbditis elegans的各種Ace基因功能性與表現位置,經比對與本研究之兩線蟲品系之表現位置相似,Ace-1與Ace-2與線蟲移行、取食行為相關,進而推測發生於兩基因的差異與乙醯膽鹼酯酶抑制劑的感受性較具相關性;Ace-3功能則尚未有相關研究及報導,且B. xylophilus的Ace-3研究顯示其對乙醯膽鹼酯酶抑制劑感受性低,因此推測它與A. besseyi產生抗藥性之機制相關性較低。
Rice white tip nematodes, Aphelenchoides besseyi, had been found on a wide range of plants, including rice, bird’s-nest fern, strawberry, and chrysanthemum. Two different host originated A. besseyi Fm and Rl isolates, collected from bird’s-nest fern and rice, were reported to have many differences, such as host ranges, modes of reproduction, native environments, as well as some parasitism associated genes. The house-keeping genes, acetylcholinesterase (Ace) genes were identified from A. besseyi Fm and Rl isolates in this study. Three Ace genes, Ace-1, Ace-2, and Ace-3 that encoded AChE1, AChE2 and AChE3, were found in both isolates of A. besseyi. After sequences alignment, there were some differences between the same Ace gene from two isolates, and Ace-2 gene showed the greatest differences. Several insecticide studies showed that target site insensitivity is the main resistance mechanism to organophosphates (OPs) and carbamates pesticides, a kind of acetylcholinesterase inhibitors. Single nucleotide polymorphisms (SNPs) is found to be responsible for the OP and cabamate target sites insensitivity. Three nematicides including fenamiphos, carbofuran and oxamyl were used to treat these two nematode isolates. The LD50 of Fm isolate to fenamiphos, carbofuran and oxamyl are 103.6 ppm, 226.7 ppm, and 116.2 ppm, respectively. The LD50 of Rl isolate to fenamiphos, carbofuran and oxamyl are 167.2 ppm, 2087.2 ppm, and 1166.7 ppm, respectively. The results showed that two isolates had different sensitivity to three nematicides tested. In situ hybridization of Ace genes from Fm isolate showed that Ace-1 and Ace-2 expressed in body wall, pharyngeal gland regions and intestine’s muscle cells, and Ace-3 expressed in pharyngeal gland regions. Ace-1 and Ace-2 were reported to associate with to movement and feeding behavior, while the function of Ace-3 is still unknown. In the B. xylophilus study, the affinity of AChE3 to acetylcholinesterase inhibitors was lower than AChE1 and AChE2. Our results also suggested that the differences between AChE1 and AChE2 might associate with the susceptibilities of A. besseyi to acetylcholinesterase inhibitors.
URI: http://hdl.handle.net/11455/95773
文章公開時間: 2020-08-18
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104035112-1.pdf3.37 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。