請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95774
標題: 除草劑促進草莓炭疽病發生的副效應
Side-effect of Herbicides on Enhancing Occurrence of Strawberry Anthracnose
作者: 高宏遠
Hung-Yuan Kao
關鍵字: 除草劑
草莓炭疽病菌Colletotrichum gloeosporioides
副作用
草莓
巴拉刈
嘉磷塞
固殺草
herbicides
strawberry anthracnose fungus Colletotrichum gloeosporioides
side-effect
strawberry
paraquat
glyphosate
glufosinate-ammonium
引用: 方麗萍。2016。 2015 年台灣除草劑市場概況。中華民國雜草學會會刊37:217-224。 朱亭錚。2007。 臺灣草莓栽培之過去與前瞻。國立臺灣大學園藝學系碩士學位論文。198頁。 安寶貞、蔡志濃、徐子惠、楊正偉、林筑蘋。2012。草莓萎凋病之研究初報。中華民國植物病理學會一百年度年會議程表及論文摘要:31-33。 呂柏寬。2013。草莓園鐮孢菌之檢測及萎凋病之研究。國立台灣大學植物醫學碩士學位學程學位論文。65頁。 李昱輝、呂理燊。1994。台灣草莓炭疽病。植病會刊3:256-257。 李國譚。2011。草莓園夏季休耕與輪作植株管理。台大農業推廣通訊88:3-7。 李國欽1978 。農藥與環境及安全用草之準則“昆蟲生態與防治研討會”。中央研究院動物研究所。163-179。 李窓明。2006。草莓。台灣農家要覽。575-580頁。豐年社。台北。 胡賢彬。2013。應用黑色素生合成基因研發鑑定炭疽病菌之生物晶片及探討其類緣關係。國立臺灣大學植物病理與微生物學研究所碩士學位論文。101頁。 陳美杏。1994。豌豆葉枯病的偵測、種子感染與傳播。國立中興大學植物病理學系碩士學位論文。114頁。 張靜玉。2014。臺灣種植紅豆農民避免噴灑巴拉刈之意願分析。國立臺灣大學農業經濟學研究所碩士學位論文。82頁。 梁鈺平。2015。草莓炭疽病檢測及防治之研究。國立台灣大學植物醫學碩士學位學程碩士學位論文。118頁。 黃振文。1993。殺草劑對豌豆幼苗生長與其根部病原菌的影響。植保會刊35:163-175。 黃振文、黃錦河。1995。殺草劑促進豌豆立枯病發生的機制。植保會刊37:107-116。 彭淑貞。2006。草莓炭疽病之發生及防治要領。苗栗區農業專訊33: 10-11。 楊秀珠。2007。草莓病害之發生與管理。苗栗區農業專訊37:3-4 鐘珮哲、彭淑貞、張廣淼、楊秀株、余思葳。2012。草莓病蟲害之發生與管理。行政院農委會藥物毒物試驗所。台中。31頁 鐘珮哲、彭淑貞。2013。草莓育苗期重要病害管理。苗栗區農業專訊61:9-10。 Altman, J. and Campbell, C. L. 1977. Effect of herbicides on plant diseases. Annual Review of Phytopathology 15: 361-385. Altman, J. and Rovira, A. D. 1989. Herbicide-pathogen interactions in soil-borne root diseases. Canadian Journal of Plant Pathology 11: 166-172. Anderson, J. A. and Kolmer, J. A. 2005. Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Disease 89:1136-1142. Autio, S., Siimes, K., Laitinen, P., Rämö, S., Oinonen, S. and Eronen, L. 2004. Adsorption of sugar beet herbicides to Finnish soils. Chemosphere 55: 215-226. Ayansina, A. D. V. and Oso, B. A. 2006. Effect of two commonly used herbicides on soil microflora at two different concentrations. African Journal of Biotechnology 5:129-132. Barbara, J. S. and Black, L. L. 1990. Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Disease 74: 69-96. Biggs, A. R. 1995. Detection of latent infections in apple fruit with paraquat. Plant Disease 79: 1062-1067. Black, B. D., Russin, J. S., Griffin, J. L. and Snow, J. P. 1996. Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed Science 44:711-716. Cerkauskas, R. F. 1988. Latent colonization by Colletotrichum spp: Epidemiological considerations and implications for mycoherbicides. Canadian Journal of Plant Pathology. 10:297-310. Cheo, P. C. 1971. The effect of plant hormones on virus-replicating capacity of cotton infected with tobacco mosaic virus. Phytopathology 61:869-872. Cook, R. T. 1993. Strawberry black spot caused by Colletotrichum acutatum. British Crop Protection Council Monograph 54: Plant Health and the European Single Market. D. Ebbels, ed. Hampshire UK. 301-304. Darrow. G. M. 1966. The Strawberry: History, Breeding and Physiology. Holt, Rinehart & Winston, New York. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rac-David, D., Bilu, A., Dag, A., Shafir, S. and Elad, Y. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology 110: 361-370. Glass, R. L. 1987. Adsorption of glyphosate by soils and clay minerals. Journal of Agricultural and Food Chemistry 35: 497-500. Griffiths, E. 1981. Iatrogenic plant diseases. Annual Review of Phytopathology 19: 69-82. Grinstein, A., Katan, J. and Eshel, Y. 1976. Plant resistance to soilborne pathogens. Phytopathology 66: 517-522. Hancock, J. F. 1999. Strawberries. CAB International, Wallingfer, UK. 237 pp. Haney, R. L., Senseman, S. A., Hons, F. M. and Zuberer, D. A. 2000. Effect of glyphosate on soil microbial activity and biomass. Weed Science 48: 89−93. Hole, C. C. and Hardwick, R. C. 1978. Chemical aids to drying seeds of beans (Phaseolus vulgaris) before harvest. Annals of Applied Biology 88: 421-427. Hornby, D. 1998. Take-all Disease of Cereals: A Regional Perspective. CAB International, Wallingford, UK. Horsfall, J. G. 1979. Iatrogenic disease: mechanisms of action. Plant Disease-An Advanced Treatise 4. Academic Press, New York. 343-355 pp. Huber, D. M., Leuck, J. D., Smith, W. C., & Christmas, E. P. 2004. Induced manganese deficiency in GM soybeans. North Central Extension-Industry Soil Fertility Conference., Des Moines, IA. Johal, G. S. and Rahe, J. E. 1988. Glyphosate, hypersensitivity and phytoalexin accumulation in the incompatible bean anthracnose host-parasite interaction. Physiological and Molecular Plant Pathology 32: 267-281. Johal, G. S. and Rahe, J. E. 1990. Role of phytoalexins in the suppression of resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum by glyphosate. Canadian Journal of Plant Pathology 12: 225-235. Johnson, L. F. and Curl, E. A. 1972. Methods for Research on the Ecology of Soilborne Plant Pathogens. Burgess Publishing Co., S. T. Paul, MN. 247pp. Lancaster, S. H., Haney, R. L., Senseman, S. A., Hons, F. M., Chandler, J. M. 2006. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum). Journal of Agricultural and Food Chemistry 54: 7221-7226. Liu, L., Punja, Z. K., and Rahe, J. E. 1997. Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean roots (Phaseolus vulgaris L.) to colonization by Pythium spp. Physiological and Molecular Plant Pathology 51: 111-127. Logan, C., Copeland, R. B., and Little, G. 1976. The effects of various chemical and physical haulm treatments on the incidence of potato gangrene. Annals of Applied Biology 84: 221-229. Matin, M., Maryam, M., Gholamreza, S. J., and Saeed, A. 2009. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Canadian Journal of Microbiology 55: 395-404. Meriles, J. M., Gil, S. V., Haro R. J., March, G. J. and Guzman, C. A. 2006. Glyphosate and previous crop residue effect on deleterious and beneficial soil borne fungi from a peanut-corn-soybean rotations. Journal of Phytopathology 154:309-316. Mertely, J. C., & Legard, D. E. 2004. Detection, isolation, and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Disease 88: 407-412. Nelson, D. C. and Nylund, R. E. 1969. Effect of chemicals on vine kill, yield and quality of potatoes in the Red River Valley. American Potato Journal 46: 315-322. Neubauer, R. and Avizohar-Hershenson, Z. 1973. Effect of the herbicide, rifluralin on Rhizoctonia disease in cotton. Phytopathology 63: 651-652. Roberts, T. R., Dyson, J. S. and Lane, M. C. 2002. Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate. Journal of Agricultural and Food Chemistry 50: 3623-3631. Rodriguez-Kabana, Curl, E. A. and Funderburk, J. H. 1966. Effect of four herbicides on growth of Rhizoctonia solani. Phytopathology 56: 1332-1333. Romig, W. R. and Sasser, M. 1972. Herbicide predioposition of snap beans to Rhizoctonia solani. Phytopathology 62: 785-786. Sanderson, J. F. 1976. Pre-harvest desiccation of oilseed crops. Outlook on Agriculture 9: 21-25. Smiley, R. W., Ogg, A. G. and James Cook, R. 1992. Influence of glyphosate on Rhizoctonia root rot, growth, and yield of barley. Plant Disease 76: 937-942. Stanley, F., Dror, M., Inna, K., Olga, B., Aida Z., Marcel, M., Yehuda, N., Benny, K., Dalia, R. D., Alon, B., Arnon, D., Sharoni, S. and Yigal, E. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology 110: 361-370. Toubia-Rahme, H., Ali-Haimoud, D. E., Barrault, G. and Albertini, L. 1995. Inhibition of Dreschslera teres sclerotioid formation in barley straw by application of glyphosate or paraquat. Plant Disease 79:595-598. Turkington, T. K., Orr, D. D. and Xi, K. 2001. The influence of Roundup (R) on in vitro growth and sporulation of Rhynchosporium secalis and Pyrenophora teres. Canadian Journal of Plant Pathology 23:307-311. Wardle, D. A. and Parkinson, D. 1990. Effects of three herbicides on soil microbial biomass and activity. Plant Soil 122: 21−28. Weir, B. S., Johnston, P. R. and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115-180. Whigham, D. K. and Stoller, E. W. 1979. Soybean desiccation by paraquat, glyphosate, and ametryn to accelerate harvest. Agronomy Journal 71: 630-633. White, T. J., Bruns, T., Lee, S. J. W. T. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-322. Wong, P.T.W., Dowling, P. M., Tesoriero, L. A. and Nicol, H. I. 1993. Influence of pre-season weed management and in-crop treatments on 2 successive wheat crops. 2. Take-all severity and incidence of Rhizoctonia root rot. Australian Journal of Experimental Agriculture 33: 173-177. Wyss, G. S. and Miiller-Scharer, H. 2001. Effects of selected herbicides on the germination and infection process of Puccinia lagenophora, a biocontrol pathogen of Senecio vulgaris. Biological Control 20:160-166. Yamamoto, S., Shiraishi, S. and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defense response in strawberry against Colletotrichum gloeosporioides? Letters in applied Microbiology 60: 379-386. Zabaloy, M. C. and Gomez, M. A. 2008. Microbial respiration in soils of the Argentine Pampas after metsulfuron methyl, 2, 4‐D, and glyphosate treatments. Communications in Soil Science and Plant Analysis 39: 370-385. Zhang, J. and Zhang, L. 2011. Improvement of an isolation medium for actinomycetes. Modern Applied Science 5: 124.
摘要: 本研究主要目的在於:(1)研發一種可以偵測與分離田間草莓炭疽病菌的選擇性培養基,及(2)探討巴拉刈、嘉磷塞及固殺草等三種除草劑(a)對於草莓炭疽病菌(Colletotrichum gloeosporioides (Penz.) Sacc.) MD-02與ME-03菌株在基質及植物體上生長繁殖的影響;(b)對土壤微生物相的影響;(c)對草莓植株生長與病害發展的影響,期有助於瞭解田間施用除草劑是否會影響草莓炭疽病的發生。首先以查氏培養基配方作為基礎培養基,評估十三種碳素源及十六種氮素源對草莓炭疽病菌菌絲生長的影響,發現果糖、麥芽糖及蔗糖等三種碳素源及硝酸鈉及硝酸鉀等兩種氮素源可顯著促進炭疽病菌菌絲的生長。比較七種化學藥劑對草莓炭疽病菌菌絲生長的影響,發現100 ppm的白克列、滅達樂及四環黴素均不具抑制菌絲生長的功效。評估化學藥劑對於土壤中真菌的抑制作用,發現25 ppm的免賴得和腐絕,50 ppm的巴拉刈和滅達樂及100 ppm的白克列可顯著抑制土壤中真菌的生長。進一步,比較前述不同濃度的化學藥劑對草莓炭疽病菌發芽管生長的影響,結果顯示這些藥劑亦有不同程度抑制發芽管生長的功效。將蔗糖30 g、硝酸鈉3 g、磷酸氫二鉀1 g、硫酸鎂0.5 g、氯化鉀0.5 g、硫酸鐵 0.01 g、洋菜粉15 g及蒸餾水1L均勻混合,並經高溫高壓(121°C, 15 lb)滅菌後,逐一加入免賴得25 mg、腐絕25 mg、白克列100 mg、滅達樂50 mg、巴拉刈50 mg及四環黴素50 mg,製成SSBP選擇性培養基(Sucrose-sodium nitrate-boscalid-paraquat selective medium),可有效偵測存活於土壤中的草莓炭疽病菌。此外,本試驗研究發現病原菌處理過巴拉刈5 ppm與嘉磷塞50 ppm四小時後,分別可促進394.4及178.9%草莓炭疽病菌的分生孢子發芽;固殺草則未觀察到有促進之效果。在查氏培養基(Czapek solution agar)分別添加不同濃度的除草劑後製成平板,接種炭疽病菌菌絲塊,五天後,發現巴拉刈2 ppm、嘉磷塞25 ppm及固殺草1.5 ppm皆可促進菌絲生長約9%;在平板上以分生孢子懸浮液塗佈的方式,三天後,巴拉刈5 ppm與嘉磷塞250 ppm則分別可促進炭疽病菌產孢達198.6與419.5%,固殺草則無促進之效果。將感染炭疽病菌的草莓葉柄段片,以不同濃度的除草劑處理後,結果顯示巴拉刈500 ppm與嘉磷塞10 ppm分別可促進炭疽病菌產孢達351.5與273.7%。將經過除草劑處理過的草莓葉柄段片,埋入混有炭疽病菌的病土中,兩天後發現巴拉刈500 ppm與嘉磷塞250 ppm可提升病原菌纏據草莓葉柄的百分比。在含有炭疽病菌分生孢子的土壤中分別添加巴拉刈、嘉磷塞或固殺草,五天後分析炭疽病菌的菌量變化,發現土壤中添加巴拉刈2500 ppm或嘉磷塞12500 ppm,炭疽病菌族群量分別可提升832.3或1223.5%;至於添加固殺草的處理組則與對照組相仿,結果呈現逐日遞減的趨勢。土壤添加巴拉刈、嘉磷塞或固殺草後,分析土壤中細菌、放線菌、真菌及酵母郡的族群量變化,結果顯示嘉磷塞2500 ppm可提升真菌與酵母菌的族群量約1205.3及363.1%;至於添加巴拉刈500 ppm及固殺草675 ppm的處理組與對照組間無顯著差異。進一步,以巴拉刈10 ppm與嘉磷塞50 ppm噴施草莓植株後,翌日接種草莓炭疽病菌,發現處理過巴拉刈及嘉磷塞可顯著提高植株的罹病度達305及117%。此外,先將巴拉刈或嘉磷塞添加於土壤中再種植草莓植株,結果發現巴拉刈濃度超過320 ppm或嘉磷塞濃度超過40 ppm時,草莓的新葉會出現黃化的症狀;若處理巴拉刈濃度在240 ppm或嘉磷塞20 ppm時,草莓植株外觀雖無異樣,然而接種炭疽病菌後,植株炭疽病罹病度卻可提高61.6〜64.1%左右。
The purposes of this study were to: (1) develop the selective medium for detecting anthracnose fungus Colletotrichum gloeosporioides of strawberry from soil; (2) evaluate the effect of herbicides paraquat, glyphosate and glufosinate-ammonium on the growth and sporulation of strawberry anthracnose fungus C. gloeosporioides isolates MD-02 and ME-03; (3) understand microbial flora in soils treated with and without herbicides.; and (4) analyze the effect of herbicides on the disease severity of strawberry inoculated with and without C. gloeosporioides. In the study, thirteen carbohydrates and sixteen nitrogenous compounds were evaluated for their effects on mycelial growth of both isolates MD-02 and ME-03. Fructose, maltose and sucrose as the carbohydrates, sodium nitrate and potassium nitrate as the nitrogenous compounds were more effective than the others to enhance growth of the pathogen. Seven pesticides were evaluated for the effect on mycelial growth of both isolates MD-02 and ME-03. The results showed that 100 ppm boscalid, metalaxyl and tetracycline didn’t inhibit mycelial growth of both isolates. Benomyl, thiabendazole, paraquat, boscalid, metalaxyl and tetracycline were respectively used to evaluate for their inhibiting ability in population proliferation of the fungi in soil. The results showed that 25 ppm benomyl, 25 ppm thiabendazole, 50 ppm paraquat, 50 ppm metalaxyl, and 100 ppm boscalid could significantly inhibit fungal populations in soils. To evaluate the effect of above pesticides at the same concentration on germ tube growth of both isolates MD-02 and ME-03, the results indicated those could also inhibit two isolates in vary degree. The sucrose-sodium nitrate-boscalid-paraquat selective medium (SSBP selective medium) consisting of 30 g sucrose, 3 g NaNO3, 1 g K2HPO4, 0.5 g MgSO4·7H2O, 0.5 g KCl, 0.01 g FeSO4·7H2O, 15 g agar, 25 mg benomyl, 25 mg thiabendazole, 50 mg paraquat, 50 mg metalaxyl, 50 mg tetracycline, 100 mg boscalid and 1 L distilled water was hence formulated for isolating C. gloeosporioides from soil. In addition, Conidia of both isolates MD-02 and ME-03 of C. gloeosporioides treated with paraquat at 5 ppm and glyphosate at 50 ppm resulted in 394.4% and 178.9% promotion of germination rates, respectively. Glufosinate-ammonium had no promotive effect on conidial germination. Mycelial growth of both isolates was increased by 9% on Czapek solution agar amended with 2 ppm of paraquat, 25 ppm of glyphosate or 1.5 ppm of glufosinate-ammonium. Czapek solution agar amended with 5 ppm paraquat or 25 ppm glyphosate significantly promoted the sporulation of isolates MD-02 and ME-03 of C. gloeosporioides. Furthermore, 351.5% and 273.7% promotion of sporulation on strawberry petiole segments treated with 500 ppm paraquat and 10 ppm glyphosate were also respectively observed. Strawberry petiole segments treated with paraquat at 500 ppm and glyphosate at 250 ppm were markedly increased colonization by C. gloeosporioides. To evaluate the effect of herbicides on survival ability of C. gloeosporioides in soil, the results showed that population density of C. gloeosporioides was significantly higher in the soil treated with 2500 ppm paraquat and 12500 ppm glyphosate compared to untreated soil as the control. Furthermore, population of fungi and yeasts was also markedly enhanced by 1205.3% and 363.1% in the glyphosate-treated soil. Spraying 10 ppm paraquat and 50 ppm glyphosate solution to strawberry plants prior to inoculating C. gloeosporioides, the results indicated that paraquat and glyphosate could increase the anthracnose disease severity by 305% and 117%. Planting strawberry seedlings in soils treated with paraquat and glyphosate, yellowing of young leaves had been observed in the treatment of 320 ppm paraquat and 40 ppm of glyphosate. However, no symptom could be observed in the treatment of 240 ppm paraquat and 20 ppm of glyphosate, but anthracnose disease severity of strawberry plants could be enhanced by 61.6 to 64.1%.
URI: http://hdl.handle.net/11455/95774
文章公開時間: 2020-08-14
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104035102-1.pdf2 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。