請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95776
標題: 台灣彰化銅污染水稻田內生長之香蕉內生細菌的多樣性、特性和應用
Diversity, characterization and application of banana endophytic bacteria from Cu-contaminated paddy fields in Changhua, Taiwan
作者: 林柏文
Bo-Wen Lin
關鍵字: 香蕉
內生細菌

水稻
促進植物生長
banana
endophytic bacteria
copper
rice
plant growth promotion
引用: Abou-Shanab, R. A. I., Angle, J. S., and Chaney, R. L. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry 38: 2882-2889. Ahsan, N., Lee, D. G., Lee, S. H., Kang, K. Y., Lee, J. J., Kim, P. J., Yoon, H. S., Kim, J. S., and Lee, B. H. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67: 1182-1193. Andres-Borderia, A., Andres, F., Garcia-Molina, A., Perea-Garcia, A., Domingo, C., Puig, S., and Penarrubia, L. 2017. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology 95: 17-32. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. Journal of Biological Chemistry 118: 531-537. Bacon, C. W., and Hinton, D. M. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control 23: 274-284. Bahadur, A., Ahmad, R., Afzal, A., Feng, H. Y., Suthar, V., Batool, A., Khan, A., and Mahmood-Ul-Hassan, M. 2017. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Chemosphere 179: 112-119. Balsanelli, E., De Baura, V. A., Pedrosa, F. D., De Souza, E. M., and Monteiro, R. A. 2014. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS ONE 9: e11l0392. Banuelos, G. S., and Meek, D. W. 1990. Accumulation of selenium in plants grown on selenium-treated soil. Journal of Environmental Quality 19: 772-777. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., and Glick, B. R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37: 241-250. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., and Stepanok, V. V. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology 47: 642-652. Bric, J. M., Bostock, R. M. and Silversone, S. E. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Applied and Environmental Microbiology 57: 535-538. Byers, H. K., Stackebrandt, E., Hayward, C., and Blackall, L. L. 1998. Molecular investigation of a microbial mat associated with the Great Artesian basin. FEMS Microbiology Ecology 25: 391-403. Chanway, C. P. 1996. Endophytes: they’re not just fungi! Canadian Journal of Botany 74: 321-322. Chanway, C. P. 1998. Bacterial endophytes: ecological and practical implications. Sydowia 50: 149-170. Chen, L. A., Luo, S. L., Xiao, X. A., Guo, H. J., Chen, J. L., Wan, Y., Li, B., Xu, T. Y., Xi, Q. A., Rao, C., Liu, C. B., and Zeng, G. M. 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology 46: 383-389. Chen, Y. J., Pan, H. R., Lin, Y. S., and Chung, W. H. 2013. Identification of an antagonistic bacterial endophyte from vegetable sweet potato and assessment of its efficacy on controlling bacterial wilt disease. Plant Pathology Bulletin 22: 45-56. Chiang, H. M. 2011. Application of endophytes on biocontrol and plant-growth promotion of bananas. Taichung: National Chung Hsing University. Master’s thesis. Cunningham, S. D., Berti, W. R., and Huang, J. W. W. 1995. Phytoremediation of contaminated soils. Trends in Biotechnology 13: 393-397. Dabrowska, G., Hrynkiewicz, K., Klosowska, K., and Goc, A. 2011. Selection of rhizobacteria improving phytoremediation of soil contaminated with heavy metal compounds. Ochrona Srodowiska 33: 53-58. Danhorn, T., and Fuqua, C. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61: 401-422. De Bary, A. 1866. Morphologie und Physiologie der pilze, flechten und myxomyceten. Pages 1-316 in Hofmeister’s Handbook of Physiological Botany, vol 2. A. De Bary, T. Irmisch, N. Pringsheim and J. Sachs, eds. Wilhelm Engelmann, Leipzig. Deng, Z. J., Cao, L. X., Huang, H. W., Jiang, X. Y., Wang, W. F., Shi, Y., and Zhang, R. D. 2011. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. Journal of Hazardous Materials 185: 717-724. Dong, Y. M., Iniguez, A. L., and Triplett, E. W. 2003. Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant and Soil 257: 49-59. Duffus, J. H. 2002. 'Heavy metals' - a meaningless term? (IUPAC technical report). Pure and Applied Chemistry 74: 793-807. Ebbs, S. D., and Kochian, L. V. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal of Environmental Quality 26: 776-781. Eevers, N., Gielen, M., Sanchez-Lopez, A., Jaspers, S., White, J. C., Vangronsveld, J., and Weyens, N. 2015. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microbial Biotechnology 8: 707-715. Ellis, R. J., Morgan, P., Weightman, A. J., and Fry, J. C. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology 69: 3223-3230. Fujishige, N. A., Kapadia, N. N., De Hoff, P. L., and Hirsch, A. M. 2006. Investigations of Rhizobium biofilm formation. FEMS Microbiology Ecology 56: 195-206. Gangwar, M., and Kataria, H. 2013. Diversity, antifungal and plant growth promoting activity of actinomycetes from rhizosphere soils of medicinal plants. Indian Journal of Agricultural Sciences 83: 1289-1294. Gangwar, M., Khushboo, and Saini, P. 2014. Diversity of endophytic actinomycetes in Musa acuminata and their plant growth promoting activity. Journal of Biological and Chemical Sciences 1: 13-23. Giller, K. E., Witter, E., and Mcgrath, S. P. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry 30: 1389-1414. Glick, B. R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances 28: 367-374. Guo, H. Y. 2016. Assessment of farmland soil heavy metals quality in Taiwan. Pages 1-18 in Agricultural Production Environment and Crop Heavy Metal Safety Management. C. S. Liu and Y. W. Lin eds. Taiwan Agricultural Research Institute, Taichung. Guo, J. K., and Chi, J. 2014. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant and Soil 375: 205-214. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiology 26: 192-195. Gupta, P., and Diwan, B. 2017. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports (Amsterdam, Netherlands) 13: 58-71. Haggag, W. M., and Timmusk, S. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology 104: 961-969. He, H. D., Ye, Z. H., Yang, D. J., Yan, J. L., Xiao, L., Zhong, T., Yuan, M., Cai, X. D., Fang, Z. Q., and Jing, Y. X. 2013. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90: 1960-1965. He, L. Y., Zhang, Y. F., Ma, H. Y., Su, L. N., Chen, Z. J., Wang, Q. Y., Qian, M., and Sheng, X. F. 2010. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology 44: 49-55. Ho, Y. N. 2013. The applications and researches of plant bacterial endophytes for phytoremediation and biocontrol. National Chung Hsing University, Taichung. Doctoral Dissertation. Hollis, J. P. 1951. Bacteria in healthy potato tissue. Phytopathology 41: 320-366. Hsiao, S. M. 2014. The future treatment strategy of heavy metal contamination in farmlands (cropland) from the perceptions of the earlier-year deregulated cropland contamination in Changhua County. National Chung Hsing University, Taichung. Master’s thesis. Hsu, C. Z. 2012. Reuse of contaminated agricultural land after remediation: Hemei Township, Changhua County as an example. National Chengchi University, Taipei. Master’s thesis. Jarup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin 68: 167-182. Jeong, S., Moon, H. S., Shin, D., and Nam, K. 2013. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil. Journal of Hazardous Materials 263: 441-449. Jiang, C. Y., Sheng, X. F., Qian, M., and Wang, Q. Y. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164. Kabagale, A. C., Cornu, B., Van Vliet, F., Meyer, C. L., Mergeay, M., Simbi, J. B. L., Droogmans, L., Vander Wauven, C., and Verbruggen, N. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant and Soil 334: 461-474. Kamnev, A. A., Tugarova, A. V., Antonyuk, L. P., Tarantilis, P. A., Polissiou, M. G., and Gardiner, P. H. E. 2005. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. Journal of Trace Elements in Medicine and Biology 19: 91-95. Khan, A. G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology 18: 355-364. Khan, M. S., Zaidi, A., Wani, P. A., and Oves, M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 7: 1-19. Kolbas, A., Kidd, P., Guinberteau, J., Jaunatre, R., Herzig, R., and Mench, M. 2015. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environmental Science and Pollution Research 22: 5370-5382. Koo, S. Y., and Cho, K. S. 2009. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. Journal of Microbiology and Biotechnology 19: 1431-1438. Kramer, U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61: 517-534. Kumar, P. B. a. N., Dushenkov, V., Motto, H., and Raskin, I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science and Technology 29: 1232-1238. Li, H. Y., Wei, D. Q., Shen, M., and Zhou, Z. P. 2012a. Endophytes and their role in phytoremediation. Fungal Diversity 54: 11-18. Li, N. Y., Fu, Q. L., Zhuang, P., Guo, B., Zou, B., and Li, Z. A. 2012b. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. International Journal of Phytoremediation 14: 162-173. Li, N. Y., Li, Z. A., Fu, Q. L., Zhuang, P., and Guo, B. 2012c. Effects of chelators and small organic acids on phytoextraction of Cd from soil with Amaranthus hypochondriacus L. Fresenius Environmental Bulletin 21: 1879-1884. Lin, H. T., Chen, S. W., Shen, C. J., and Wong, S. S. 2005. Phytoremediation of heavy metal-contaminated soil with local plants. Plant Protection Bulletin 47: 241-250. Lucy, M., Reed, E., and Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 86: 1-25. Luo, S. L., Chen, L., Chen, J. L., Xiao, X., Xu, T. Y., Wan, Y., Rao, C., Liu, C. B., Liu, Y. T., Lai, C., and Zeng, G. M. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85: 1130-1138. Ma, Y., Oliveira, R. S., Nai, F. J., Rajkumar, M., Luo, Y. M., Rocha, I., and Freitas, H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management 156: 62-69. Ma, Y., Prasad, M. N. V., Rajkumar, M., and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 29: 248-258. Ma, Y., Rajkumar, M., Zhang, C., and Freitas, H. 2016a. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174: 14-25. Ma, Y., Rajkumar, M., Zhang, C., and Freitas, H. 2016b. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials 320: 36-44. Mckenney, P. T., Driks, A., and Eichenberger, P. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology 11: 33-44. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., and Backman, P. A. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control 46: 46-56. Melo, M. R., Flores, N. R., Murrieta, S. V., Tovar, A. R., Zuniga, A. G., Hernandez, O. F., Mendoza, A. P., Perez, N. O., and Dorantes, A. R. 2011. Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. International Journal of Environmental Science and Technology 8: 807-816. Mesa, V., Navazas, A., Gonzalez-Gil, R., Gonzalez, A., Weyens, N., Lauga, B., Gallego, J. L. R., Sanchez, J., and Pelaez, A. I. 2017. Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied and Environmental Microbiology 83: 18. Motior, M. R., Tan, P. J., Faruq, G., Sofian, A. M., Rosli, H., and Boyce, A. N. 2013. Use of amaranth (Amaranthus paniculatus) and Indian mustard (Brassica juncea) for phytoextraction of lead and copper from contaminated soil. International Journal of Agriculture and Biology 15: 903-908. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64: 548-572. Pereira, S. I. A., Barbosa, L., and Castro, P. M. L. 2015. Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. International Journal of Environmental Science and Technology 12: 2127-2142. Pereira, S. I. A., and Castro, P. M. L. 2014. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environmental Science and Pollution Research 21: 14110-14123. Perez-Miranda, S., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L. S., and Fernandez, F. J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70: 127-131. Petrini, O. 1991. Fungal endophytes of tree leaves. Pages 179-197 in Microbial ecology of leaves. J. H. Andrew and S. S. Hirano, eds. Springer publishing, New York. Photita, W., Lumyong, S., Lumyong, P., and Hyde, K. D. 2001. Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycological Research 105: 1508-1513. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370. Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56: 15-39. Plociniczak, T., Sinkkonen, A., Romantschuk, M., Sulowicz, S., and Piotrowska-Seget, Z. 2016. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Frontiers in Plant Science 7: 101. Puschenreiter, M., Stoger, G., Lombi, E., Horak, O., and Wenzel, W. W. 2001. Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science 164: 615-621. Rahman, M. M., Azirun, S. M., and Boyce, A. N. 2013. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS ONE 8: e62941. Rathi, M., and Nandabalan, Y. K. 2017. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. Environmental Science and Pollution Research 24: 9723-9733. Robinson, B., Russell, C., Hedley, M., and Clothier, B. 2001. Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agriculture Ecosystems and Environment 87: 315-321. Salt, D. E., Smith, R. D., and Raskin, I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49: 643-668. Schwyn, B., and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 47-56. Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379-423. Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution 156: 1164-1170. Shenker, M., Oliver, I., Helmann, M., Hadar, Y., and Chen, Y. 1992. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. Journal of Plant Nutrition 15: 2173-2182. Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688. Soil and Groundwater Pollution Remediation Funds. 2017. Heavy metal pollution in farmland. Retrieved December 10, 2017, from https://sgw.epa.gov.tw/en/accomplishments/farmland Souza, A., Cruz, J. C., Sousa, N. R., Procopio, A. R., and Silva, G. F. 2014. Endophytic bacteria from banana cultivars and their antifungal activity. Genetics and Molecular Research 13: 8661-8670. Souza, S. A., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Percira, M. C. T., and Nietsche, S. 2013. Endophytic bacterial diversity in banana ‘Prata Ana’ (Musa spp.) roots. Genetics and Molecular Biology 36: 252-264. Srikakolapu, M. C. S. 2013. Identification and characterisation of predominant heavy metal resistant bacteria isolated from industrial effluents. Progressive Research 8: 315-318. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., and Sheng, X. F. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology 101: 501-509. Titah, H. S., Abdullah, S. R. S., Mushrifah, I., Anuar, N., Basri, H., and Mukhlisin, M. 2013. Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecological Engineering 58: 303-313. Trujillo, M. E., Riesco, R., Benito, P., and Carro, L. 2015. Endophytic Actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Frontiers in Microbiology 6: 15. Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., and Yang, X. Y. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany 117: 28-40. Unaldi, M. N., Korkmaz, H., Ankan, B., and Coral, G. 2003. Plasmid-encoded heavy metal resistance in Pseudomonas sp. Bulletin of Environmental Contamination and Toxicology 71: 1145-1150. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moenne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dye, F., and Prigent-Combaret, C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4: 356. Vigliotta, G., Matrella, S., Cicatelli, A., Guarino, F., and Castiglione, S. 2016. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. Journal of Environmental Management 179: 93-102. Visioli, G., Menta, C., Gardi, C., and Conti, F. D. 2013. Metal toxicity and biodiversity in serpentine soils: application of bioassay tests and microarthropod index. Chemosphere 90: 1267-1273. Wang, M. Y., Zhou, D. B., Jing, T., Hu, Y. F., Gao, Z. F., Xie, Q. Y., Zhang, X. Y., and Qi, C. L. 2014. Endophytes isolation and broad-spectrum antagonistic bacterias screening from banana. Biotechnology Bulletin 8: 138-145. Wang, W. F., Deng, Z. J., Tan, H. M., and Cao, L. X. 2013. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. International Journal of Phytoremediation 15: 488-497. Wei, Y., Hou, H., Shangguan, Y. X., Li, J. N., and Li, F. S. 2014. Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. European Journal of Soil Biology 62: 15-21. Wenzel, W. W. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 321: 385-408. Weyens, N., Van Der Lelie, D., Taghavi, S., and Vangronsveld, J. 2009. Phytoremediation: plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology 20: 248-254. Wilson, D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274-276. Wood, J. L., Tang, C. X., and Franks, A. E. 2016. Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biology and Biochemistry 103: 131-137. Wright, M. S., Peltier, G. L., Stepanauskas, R., and Mcarthur, J. V. 2006. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiology Ecology 58: 293-302. Wu, S. C., Cheung, K. C., Luo, Y. M., and Wong, M. H. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution 140: 124-135. Ye, N. H., Li, H. X., Zhu, G. H., Liu, Y. G., Liu, R., Xu, W. F., Jing, Y., Peng, X. X., and Zhang, J. H. 2014. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice. Plant and Cell Physiology 55: 2008-2016. Zaidi, S., Usmani, S., Singh, B. R., and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., and Sheng, X. F. 2011. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83: 57-62.
摘要: 植物內生細菌已廣泛應用在植物保護領域,如病害防治、促進生長、適應逆境等。本研究比較台灣彰化銅污染與非污染水稻田內生長之香蕉內生細菌多樣性與菌相差異,進一步分析耐銅特性與促進植物生長的特性,最後評估香蕉內生細菌對水稻生長的效果與銅逆下對水稻生長的影響。自台灣彰化大肚溪流域和洋仔厝溪流域之間採集香蕉組織樣本,於3處銅污染地與3處非污染地內各分離到193株菌株,分析結果得知,銅污染地之內生細菌多樣性較低 (Shannon index = 2.781; Simpson index = 6.826),然土壤銅濃度與多樣性指數無明顯相關,屬豐富度亦無明顯差異。本研究中屬優勢菌屬之Bacillus 屬內生菌易自銅污染農地中分離得到,分離率為 35.2 %;此外6處農地之內生細菌以香蕉地下部所分離之比率較高,進一步比較銅污染地與非污染地之地上部與地下部菌株分離,顯示銅污染地之地上部菌株分離率 (36.8 %) 高於非污染地 (21.2 %)。由耐銅性測試得知,銅污染地內之耐銅菌株比率顯著高於非污染地,然地上部與地下部之耐銅菌株比率無明顯差異,顯示銅污染地之內生細菌的耐銅能力和其於植物體內的分佈並沒有相關。於93株耐銅菌株中,37株菌株具有促進油菜與水稻生長的潛力,並挑選對種子活力指數最高之5株菌株,Lysobacter sp. R5-43、Herbaspirillum sp. P5-6、Rhizobium sp. R6-6-1、Micromonospora sp. R6-22 及 Paenibacillus sp. PS6-4,測試對水稻生長的影響,結果指出,處理內生細菌之水稻種子,能促進幼苗之生長。分析可促進水稻生長之因子指出,除 R6-22 菌株外,其餘4者可以生合成生長素、螯鐵蛋白或具溶解磷酸鹽之能力。於不同銅濃度下處理內生細菌,結果顯示於1 ppm銅濃度下,R5-43與 P5-6菌株具促進水稻幼苗高度與重量之趨勢;而於2.5 ppm銅濃度下,則以R5-43、R6-6-1、R6-22 及 PS6-4 菌株對幼苗株高有顯著促進效果;另於含 120 ppm 銅之 0.8 % WA中,水稻根部皆無法正常發育,唯處理R6-6-1與PS6-4菌株之株高有顯著增加。此外於 50 ppm 銅濃度下添加P5-6、R6-6-1及PS6-4菌株後,水稻種子發芽率可顯著提升11.9 ~ 20.4 %。未來仍需持續探討供試菌株在水稻植體內的纏據能力與位置,測試其他的促進植物生長與溶解難溶重金屬銅之特性,並分析供試菌株在促進水稻生長的同時,是否會增加水稻對重金屬銅的生物可利用性,以期能將植生萃取法應用於田間,增加土壤整治策略的多元性。
Endophytic bacteria have been known for plant protection, including disease control, growth promotion, stress adaptation, etc. This study aimed to A) compare diversity and bacterial flora of banana endophytic bacteria from copper-contaminated and uncontaminated paddy fields in Changhua, Taiwan, B) analyze copper-tolerant and plant growth promoting traits, and C) evaluate the effect of endophytic bacteria on rice growth with or without copper. After collecting banana tissue samples from the Dadu and Yangzaicuo basin, 193 and 193 strains were respectively isolated from samples of copper-contaminated and uncontaminated sites. Though diversity of banana endophytic bacteria was lower in contaminated sites (Shannon index = 2.781; Simpson index = 6.826), there was no correlation between soil copper concentrations and diversity indexes, and no difference in genus richness. Of these strains, Bacillus sp. was the predominant group in contaminated sites and had the highest isolation frequency (35.2 %). In addition, strains in 6 sites were mainly collected from the root systems of banana, and strains from root or shoot systems were further analyzed. The percentage of strains from shoot systems in contaminated sites (36.8 %)was and significantly higher than the percentage of those in uncontaminated sites (21.2 %). According to the copper tolerance test, the percentage of copper-tolerant strains in contaminated sites was higher than the percentage of those in uncontaminated sites; however, there was no significant difference in the percentages of copper-tolerant strains between root and shoot systems, which revealed that there was no correlation between copper-tolerant traits and distribution of endophytic bacteria in banana. Among 93 copper-tolerant strains, 37 strains had the potential to promote growth of both rape and rice. Five strains with high relative vigor indexes, including Lysobacter sp. R5-43, Herbaspirillum sp. P5-6, Rhizobium sp. R6-6-1, Micromonospora sp. R6-22, and Paenibacillus sp. PS6-4, were examined for there effectiveness on rice growth. The results indicated that rice seeds treated with endophytic bacteria could promote seedlings growth and it might be attributed to production of auxins, siderophores, or compounds solubilizing phosphate. Rice seeds treated with endophytic bacteria was examined by different concentrations of copper. Under 1 ppm of copper, rice seedlings treated with strains R5-43 and P5-6 became higher and heavier. Under 2.5 ppm of copper, leaves of rice seedlings treated with strains R5-43, R6-6-1, R6-22 and PS6-4 were significantly longer. 0.8 % WA with 120 ppm of copper was used to simulate the copper contaminated field condition, and the results indicated that strains R6-6-1 and PS6-4 could promote the rice seedlings growth to overcome the stunting symptom under copper stress. Besides, strains P5-6, R6-6-1 and PS6-4 could accelerate rice seeds germination under 50 ppm of copper. We expect to put phytoextraction into practice, and enrich soil remediation strategies; therefore, we suggest that some concepts below be cleared: A) the colonization ability and location of strains in rice, B) another plant growth-promoting and heavy metals solubilization traits, and C) effect of endophytic bacteria on bioavailability of heavy metals.
URI: http://hdl.handle.net/11455/95776
文章公開時間: 2020-02-02
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-107-7104035101-1.pdf4.38 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。