請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/95779
標題: 台灣草莓萎凋病之病原菌鑑定與其生物防治試驗
Identification for the causal agent of strawberry Fusarial wilt from Taiwan and its biocontrol experiments
作者: 陳冠霖
Kuan-Lin Chen
關鍵字: 草莓
草莓萎凋病菌
生物防治
Bacillus mycoides
Strawberry
Fusarium oxysporum f. sp. fragariae
biocontrol
Bacillus mycoides
引用: 丁姵分。2006。番茄萎淍病之生物防治鑑定與防病潛力評估。國立中興大學植物病理學系碩士論文。23 頁。 安寶貞、蔡志濃、徐子惠、楊正偉、林筑蘋。2012。草莓萎凋病之研究初報。 中華民國植物病理學會一百年度年會論文摘要。148-149頁。 行政院農業委員會。2015。農業統計要覽(104年)。行政院農業委員會出版。24頁。 行政院農業委員會農業藥物毒物試驗所。2014。103年度水果農產品農藥殘留監測研究成果報告。行政院農業委員會農業藥物毒物試驗所。11頁。 吳添益。2013。草莓健康土壤之培育。苗栗區農業專訊61:1-2。 呂柏寬。2013。草莓園鐮孢菌之檢測及萎凋病之研究。國立臺灣大學生物資源暨農學院植物醫學碩士學位學程碩士論文。 56-57頁。 翁儷倩。2012。草莓加工及其利用。桃園區農業技術專輯 第九號-草莓專輯。31-33頁。桃園區農業改良場。 張定霖、李裕娟 、張宏光。2016。高效隔離環境之草莓健康種苗生產簡介。農政與農情287:82-85。行政院農業委員會。台北。 張廣淼、彭淑貞、吳添益。2013。草莓苗健康管理。苗栗區農業專訊64:23-24。 張廣淼、彭淑貞、黃勝泉。2009。草莓產業的發展及展望。苗栗區農業專訊。 48:2-4。 湯佳蓉。2012。蕈狀芽孢捍菌防治番茄萎淍病之相關機制分析。國立中興大學植物病理學系碩士論文。21 頁。 黃振文、孫守恭。1997。臺灣產鐮胞菌。初版。62-73頁。世維出版社:台中。 羅國偉。2012。草莓田間管理技術。桃園區農業技術專輯 第九號-草莓專輯。9-13頁。桃園區農業改良場。 鐘珮哲、彭淑貞、張廣淼。2012a。草莓病蟲害之發生與管理。1頁。行政院農業委員會農業藥物毒物試驗所。 鐘珮哲、彭淑貞、張廣淼。2012b。造成草莓植株冠腐萎凋之病原菌調查。中華民國植物病理學會一百年度年會論文摘要。142-143頁。 Arroyo, F. T., Llergo, Y., Aguado, A., and Romero, F. 2009. First report of Fusarium wilt caused by Fusarium oxysporum on strawberry in Spain. Plant Disease 93: 323. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J. 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61(5): 289-298. Benhamou, N., Kloepper, J. W., and Tuzun, S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204: 153-168. Bloemberg, G. V., and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4 (4): 343-350. Chet, I., Ordentlich, A., Shapira, R., and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and Soil 129: 85-92. Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71(9): 4951-4959. de Freitas, J. R., Banerjee, M. R., and Germida, J. J. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield. Biology and Fertility of Soils 24: 358-364. Fang, X., Phillips, D., Li, H., Sivasithamparam, K., and Barbetti, M. J. 2011. Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Scientia Horticulturae 131: 39-48. Fang, X., Phillips, D., Verheyen, G., Li, H., Sivasithamparam, K., and Barbetti, M. J. 2012. Yields and resistance of strawberry cultivars to crown and root diseases in the field and cultivar responses to pathogens under controlled environmental conditions. Phytopathologia Mediterranea 51: 69-84. Gharbia, H. D., Diaa, A. I., and Mobasher, S. O. 2016. Response of running shoot tips of strawberry (Fragaria x ananasa) for in vitro propagation in Kurdistan Region of Iraq. International Journal of Environment, Agriculture and Biotechnology 1: 164-169. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26: 192-195. Han, H. S., Supanjani., and Lee, K. D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil and Environment 52: 130-136. Islam, M. R., Madhaiyan, M., Boruah, H. P. D., Yim,W., Lee, G., Saravanan, V. S., Fu, Q., Hu, H., and Sa, T. 2009. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Journal of Microbiology and Biotechnology 19: 1213-1222. Johnson, H., Holland, A. H., Paulus, A. O., and Wilhelm, S. 1962. Soil fumigation found essential for maximum strawberry yields in southern California. California Agriculture 16: 4-6. Kadir, S., and Sidhu, G. 2006. Strawberry (Fragaria × ananassa Duch) growth and productivity as affected by temperature. HortScience 41: 1423-1430. Kim, C. H., Seo, H. D., Cho, W. D., and Kim, S. B. 1982. Studies on varietal resistance and chemical control to the wilt of strawberry caused by Fusarium oxysporum. Korean Journal of Plant Protection 21: 61-67. Koike, S. T., Kirkpatrick, S. C., and Gordon, T. R. 2009. Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Disease 93: 1077. Li, J., Ovakim, D. H., Charles, T. C., and Glick, B. R. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Current Microbiology 41: 101-105. Lin, Y. H., Chen, K. S., Chang, J. Y., Wan, Y. L., Hsu, C. C., Huang, J. W., and Chang, P. F. L. 2010. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnology 27(4): 409-418. Ling, N., Xue, C., Huang, Q., Yang, X., Xu, Y., and Shen, Q. 2010. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55(5): 673-683. Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiologia Plantarum 1: 142-146. Manjula, K., and Podile, A. R. 2001. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Canadian Journal of Microbiology 47(7): 618-625. Moon, B. J., Chung, H. S., and Park, H. C. 1995. Studies on antagonism of Trichoderma species to Fusarium oxysporum f. sp. fragariae V. Biological control of Fusarium wilt of strawberry by a mycoparasite, Trichoderma harzianum. Korean Journal Plant Pathology 11(4): 298-303. Nam, M. H. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. Journal of Microbiology and Biotechnology 19(5): 520-524. Nam, M. H., Kang,Y. J., Lee, I. H., Kim, H. G., and Chun, C. 2011. Infection of daughter plants by Fusarium oxysporum f. sp. fragariae through runner propagation of strawberry. Korean Journal of Horticultural Science and Technology 29: 273-277. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170: 265-270. Okamoto, H., Fujii, S., Kato, K., and Yoshioka, A. 1970. A new strawberry disease ‘Fusarium wilt’. Plant Protection Science 24: 231-235. Parmar, P., and Sindhu, S. S. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research 3(1): 25-31. Patten, C. L., and Glick, B. R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68(8): 3795-3801. Perez-Miranda, S., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L. S., and Fernandez, F. J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70(1): 127-131. Persello-cartieaux, F., Nussaume, L., and Robaglia, C. 2003. Tales from the underground: molecular plant–rhizobacteria interactions. Plant, Cell and Environment 26: 189-199. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., and Steurbaut, W. 2003. Chitosan as antimicrobial agent:  applications and mode of action. Biomacromolecules 4 (6): 1457-1465. Siddiqui, I. A., Haas, D., and Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology 71(9): 5646-5649. Sneh, B., Dupler, M., Elad, Y., and Baker, R. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology 74: 1115-1124. Snyder, W. C., and Hansan, H. N. 1940. The species concept in Fusarium. American Journal of Botany 27: 64-67. Stanković, I., Ristić, D., Vučurović, A., Milojević, K., Nikolić, D., Krstić, B., and Bulajić, A. 2014. First report of Fusarium wilt of strawberry caused by Fusarium oxysporum in Serbia. Plant Disease 98: 1435. Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K., and Hyakumachi, M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Disease 97(5): 619-625. Swain, M. R., Naskar, S. K., and Ray, R. C. 2007. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish Journal of Microbiology 56: 103-110. Tezuka, N., and Makino, T. 1991. Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry. Annals of the Phytopathological Society of Japan 57: 506-511. van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453-483. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586. Voisard, C., Keel, C., Haas, D., and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EBMO Journal 8: 351-358. Williamson, M., Fernandez-Ortuno, D., and Schnabel, G. 2012. First report of Fusarium wilt of strawberry caused by Fusarium oxysporum in South Carolina. Plant Disease 96: 911. Winks, B. L., and Williams, Y. N. 1965. A wilt of strawberry caused by a new form of Fusarium oxysporum. Queensland Journal of Agricultural and Animal Science 22: 475-479. Yuan, H., Ling, X., Liu, T., Chen, T., Yang, Y., Yao, S., and Zhang, B. 2014. Microscopic observations of strawberry plant colonization by a GFP-labelled strain of Fusarium oxysporum f. sp. fragariae. Canadian Journal of Plant Pathology 36(4): 501-508. Zhao, X. S., Zhen, W. C., Qi, Y .Z., Liu, X. J., and Yin, B. Z. 2009. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry. Frontiers of Agriculture in China 3: 34-39.
摘要: 西元2012年,在苗栗獅潭、大湖等栽培區,發現草莓植株出現矮化、新葉偏上生長、黃化及葉片萎凋乾枯等症狀;切開病株莖基部則可見到維管束褐變的病徵。由田間取回罹病植株,進行莖基部組織分離可疑病原菌,依柯霍氏法則測試後,確定各分離株的致病毒性後,選取毒力較強之Fofb 01-2與Fofb 4-13兩菌株進行草莓萎凋病菌之鑑定及其生物防治試驗。本研究主要目的在於 (1) 鑑定台灣草莓萎凋的病原菌;(2) 研發草莓萎凋病的生物防治方法。首先將Fofb 01-2與Fofb 4-13菌株分別培養於半醣Potato Dextrose Agar (PDA) 平板上,菌落顏色呈白色至灰色,中央有紫色色素沉積。病原菌有三種形態的孢子,小孢子呈現卵圓狀或臘腸狀;大孢子呈直至彎曲鐮刀狀,具有3-5個隔膜;厚膜孢子呈圓形。利用Lin等人 (2010) 針對Fusarium oxysporum Schl.所設計的專一性引子對FnSc-1 (5’-TACCACTTGTTGCCTCGGCGGATCAG-3’)/FnSc-2 (5’-TTGAGGAACGCGAATTAACGCGAGTC-3’)進行PCR (polymerase chain reaction),確定Fofb 01-2與Fofb 4-13兩菌株歸屬於F. oxysporum。進一步將病原菌株接種於胡瓜、西瓜、萵苣、白菜、番茄及草莓等不同寄主植物,結果僅有草莓植株受感染罹病,隨後以Suga等人 (2013) 針對尖鐮孢菌草莓分化種 (Fusarium oxysporum Schl. f. sp. fragariae Winks & Williams) 所設計的專一性引子對FofraF (5’-CAGACTGGGGTGCTTAAAGTT-3’)/FofraR (5’-AACCGCTAGGGTCGTAACAAA-3’) 進行Fofb 01-2與Fofb 4-13的分子生物學分析,並與NCBI資料庫進行比對,確認兩菌株的學名為F. oxysporum Schl. f. sp. fragariae Winks & Williams。Fofb 01-2與Fofb 4-13菌株的菌絲最適生長溫度及分生孢子與厚膜孢子最適發芽溫度皆為28 ℃。分生孢子最適發芽pH值則介於4-8,發芽率皆可達80 %以上。利用不同碳氮素源培養本病原菌,發現兩菌株最適生長於麥芽糖 (Maltose) 及山梨糖醇 (Sorbitol)、天門冬醯胺 (Asparagine)、纈氨酸 (Valine) 及硝酸鈉 (NaNO3)。在溫室測試蕈狀芽胞桿菌Bacillus mycoides BM103、BM104及BM105菌株防治草莓萎凋病之效果,結果發現施用三菌株均具有促進草莓植株根部增長2-4公分之功效。將處理過B. mycoides三菌株的草莓植株 (來自於組織培養苗) 分別種植於病菌土 (10^3 cfu/g) 中,結果顯示BM103菌株防治草莓萎凋病的功效最佳,可降低66%的罹病度。施用BM103菌株於草莓植株經過8天後,可發現植物根部與莖基部被纏據率達100%。進一步,利用B. mycoidesBM103之黃豆粉醱酵液搭配1% (w/v)幾丁聚醣澆灌於草莓植株後,可有效降低草莓萎凋病之罹病度達52.78 %以上。分析BM103的PGPR (Plant growth-promoting rhizobacteria) 特性,結果顯示BM103可生合成IAA約5.92 μg/ml,並釋放出氨。
Since 2012, a new disease of strawberry has been found in Da-Hu, Shih-Tan, and other cultivation areas in Taiwan. The symptoms consisted of stunting, wilting of foliage, necrotic crowns and roots, discoloration of the internal vascular tissue, and eventually plant death. The isolates of the causal agents were obtained from diseased plants. Among them, two isolates named Fofb 01-2 and Fofb 4-13 showed highly virulent to strawberry plants and were selected for the following experiments. The purposes of the study were (1) to identify the causal agent of strawberry Fusarial wilt from Taiwan; (2) to develop the biocontrol measures for controlling the disease. Both isolates were subcultured on 1/2 PDA and formed gray-to-purple colonies. The isolates could produce microconidia, macroconidia, and chlamydospores. Microconidia were oval to ellipsoid. Macroconidia were straight to sickle, 3 to 5 septate. Chlamydospores were round. A 327 bp DNA fragment was successfully amplified from both fungal isolates by PCR (polymerase chain reaction) using two primers, FnSc-1 (5’-TACCACTTGTTGCCTCGGCGGATCAG-3’)/FnSc-2 (5’-TTGAGGAACGCGAATTAACGCGAGTC-3’) specific for Fusarium oxysporum. Virulence assays revealed that the isolates could only infect strawberry showing similar symptoms observed in the diseased plants in the field. No symptoms were observed after they were inoculated onto cucumber, watermelon, lettuce, Pak choi, and tomato. Further analysis using primers FofraF (5’-CAGACTGGGGTGCTTAAAGTT-3’)/FofraR (5’-AACCGCTAGGGTCGTAACAAA-3’) identified two isolates as F. oxysporum Schl. f. sp. fragariae Winks & Williams. The optimal temperature for mycelial growth, conidial and chlamydospore germination of isolates Fofb 01-2 and Fofb 4-13 was at 28℃. The pH values between 4-8 was optimal for both conidial germination more than 80%. Two isolates were more suitable for mycelial growth in media with carbon sources, maltose and sorbitol or nitrogen sources, asparagine, valine, and NaNO3. The strawberry seedlings were treated respectively with Bacillus mycoides isolates BM103, BM104, and BM105. The results indicated that the three biocontrol agents could significantly increase root growth about 2-4cm compared to the control. After three consecutive drenches, each of BM103, BM104, and BM105 suspension (10^8 cfu/ml) was applied to strawberry seedlings weekly, and the treated plants were transferred to grow in the infested soil (10^3 cfu/g). The results indicated that BM103 could reduce the disease severity more than 66% compared to the control. It was found that the roots and crown of strawberry seedlings could be completely colonized by B. mycoides BM103 eight days after drenching treatment. In order to improve efficacy of B. mycoides BM103 for controlling the disease, 1% (w/v) chitosan was mixed with soybean meal fermented broth of BM103. The results indicated that the disease severity was reduced more than 52.78 % compared to the control. In addition, analyzing PGPR characteristics showed that B. mycoides BM103 could produce IAA about 5.92 μg/ml and release ammonia.
URI: http://hdl.handle.net/11455/95779
文章公開時間: 2020-08-18
顯示於類別:植物病理學系

文件中的檔案:
檔案 大小格式 
nchu-106-7104035111-1.pdf2.33 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。