Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95900
標題: 利用地電阻影像剖面判釋坡地穩定性
Using Resistance Image Profile for Interpretation of Slope Stability
作者: Hong-Ling Chang
張虹羚
關鍵字: resistivity
RIP (Resistivity Image Profile)
stability analysis
potential sliding surface
電阻率
地電阻影像剖面
穩定分析
潛在滑動面
引用: 1. 台灣營建研究院與日本東京大學,2005 2. 尤仁宏,「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學,碩士論文,民國95年7月。 3. 劉斌、李术才、李樹忱等,「隧道含水構造直流電阻率法超前探測研究」[J]. 岩土力學, 2009, 30(10): 3093-3101。 4. 李維峰、張嘉峰、梅興泰,台灣營建研究院;蔡道賜,三合技術有限公司,地電阻影像剖面探測法於地下工程之應用,地工技術,第108期,2006(民國95年6月)。 5. 孔繁良、陳超、孫冠軍,「高密度電法在清江水布埡庫區滑坡調查中的應用」[J]. 工程地球物理學報,2008,5(2): 201-204。 6. 張嘉峰、梅興泰、李維峰等,「先進工程鑑識技術與應用-ERT」,技師月刊47,2007,專輯論文,第38-46頁。 7. 楊証傑,「ERT在地工調查應用之問題評析與空間解析度探討」,國立交通大學,碩士論文,民國94年7月。 8. 郭秀軍、賈永剛、黃瀟雨等,「利用高密度電阻率法確定滑坡面研究」【J】.岩石力學與工程學報,2004,23(10):1662-1669。 9. 中村浩之(2011)技術者の疑問に答える地すべり・崩壊,187 P.,総合土木研究所。 10. Agnesi, V., Camarda, M., Conoscenti, C., Di Maggio, C., Diliberto, I.S., Madonia, P.,Rotigliano, E., 2005. A multidisciplinary approach to the evaluation of themechanism that triggered the Cerda landslide (Sicily, Italy). Geomorphology 65,101–116. 11. Archie, G. E., 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characterisics, Transactions of the American Institute of Mining and Metallurgical Engineers, Vol. 146, pp. 54-62. 12. Arulanandan K., Smith S.S., (1973), Electrical Dispersion in Relation to Soil Structure, J. of the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No SM12, December, pp 1113-1133. 13. Baldi, P., Cenni, N., Fabris, M., Zanutta, A., 2008. Kinematics of a landslide derived fromarchival photogrammetry and GPS data. Geomorphology 102, 435–444. 14. Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., Lollino, G., 2009. LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy.Geomorphology 105, 193–201. 15. Bishop, A.W. (1955), 'The use of slip circle in the stability analyses of slopes', Géotechnique, Vol.5, pp 7-17. 16. Boenzi, F., Giura Longo, R., 1994. La Basilicata: i tempi, gli uomini e l'ambiente. Bari,Edilpuglia. 250 pp. 17. Bruno, F., Marillier, F., 2000. Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surveys in Geophysics 21, 333–348. 18. Calvello, M., Cascini, L., Sorbino, G., 2008. A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces.International Journal for Numerical and Analytical Methods in Geomechanics 32,327–351. 19. Catani, F., Farina, P., Moretti, S., Nico, G., Strozzi, T., 2005. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes andmass movements. Geomorphology 66, 119–131. 20. Corwin, D.L., Lesch, S.M., 2003. Application of soil electrical conductivity to precision agriculture: theory,principles, and guidelines. Agron. J. 95 (3), 55–471. 21. Dahlin, T. 2001. The development of DC resistivity imaging techniques. Computers & Geosciences 27 (2001) 1019–1029. 22. Dahlin T. and Zhou B., 2004, 'A numerical comparison of 2D resistivity imaging with 10 electrode arrays', Geophysical prospecting, Vol. 52, pp.379-398. 23. Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Demoulin, A.,2008. Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineer-ing Geology 99, 11–22. 24. Edwards L.S., 1977. A modified pseudosection for resistivity and induced-polarization. Geophysics, 42, 1020-1036. 25. Gallicchio, S., Marcucci, M., Pieri, P., Premoli Silva, I., Sabato, L., Salvini, G., 1996.Stratigraphical data from a Cretaceus claystones sequence of the 'Argille Varicolori'in the Southern Apennines (Basilicata, Italy). Palaleopelagos 6, 261–272. 26. Gil Lim Yoon and Jun Boum Park ,2001, Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils , Journal of Hazardous Materials B84 147–161 27. Godio, A., Strobbia, C., De Bacco, G., 2006. Geophysical characterisation of a rockslide in an alpine region. Engineering Geology 83, 273–286. 28. Godio A., Bottino G. (2001). Electrical and electromagnetic investigation for landslide characterization. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science. Volume 26, Issue 9, 2001, Pages 705–710. 29. Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., Reichenbach, P.,Lanari, R., 2009. Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria. Central Italy. Pure Appl. Geophys. 166, 1425–1459. 30. Hermance, J. F. 1973. An electrical model for the sub-Icelandic crust. Geophysics 38, 3-13. 31. Hutchinson, J.N. (1981), 'Methods of locating slip surfaces in landslides', Proceedings of the Symposium on Investigation and Correction of Landslides, Vol.2, pp.169-203. 32. Jongmans, D., and Garambois, S., 2007, Geophysi-cal investigation of landslides: A review: Bul-letin de la Société Géologique de France, v. 178, p. 101–112. 33. Kariya, K. A., and Shankland, T. J. 1983. Electrical conductivity of dry lower crustal rocks. Geophysics 48, 52-61 34. Kasai, M., Ikeda, M., Asahina, T., Fujisawa, K., 2009. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113,57–69. 35. Keller G.V. and Frischknecht F.C.,1966. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford. 36. Koefoed O., 1979, 'Geosounding Principles', Elsevier scientific publishing company. 37. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., Sdao, F., 2005. Case History 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy. Geophysics 70, B11–B18. 38. Lapenna, V., Lorenzo, P., Perrone, A.,Piscitelli, S., Sdao, F. and Rizzo, E.,2003, High-resolution Geoelectrical Tomographies in the Study of Giarrossa Landslide(Southern Italy), Bulletin of Engineering Geology and the Environment, Vol.62,No.3,p.259-168. 39. Lazzari, M., Geraldi, E., Lapenna, V., Loperte, A., 2006. Natural hazards vs. human impact: an integrated methodological approach in geomorphological risk assessing on Tursi historical site, southern Italy. Landslides 3, 275–287. 40. Lebourg, T., Binet, S., Tric, E., Jomard, H., El Bedoui, S., 2005. Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 5, 399–406. 41. Loke, M. H. and Baker, R. D., 1996, Practical Techniques for 3D Resistivity Surveys and Data Inversion, Geophysics Prospecting, Vol. 44,pp. 499-523.MARESCOT L, RÉGIS MONNET R, CHAPELLIER D. Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps[J]. Engineering Geology, 2008, 98(1-2): 18-28. 42. Loke M.H., 2003, 'Tutorial : 2-D and 3-D electrical imaging surveys', Geotomo Software, Malaysia. 43. Loke, M., 2004 (PDF). Tutorial: 2-D and 3-D electrical imaging surveys, www.geoelectrical.com, version December 2013. 44. Lollino, G., Arattano, M., Cuccureddu, M., 2002. The use of the automatic inclinometric system for landslide early warning: the case of Cabella Ligure (North-Western Italy). Physics and Chemistry of the Earth 27, 1545–1550. 45. Mauritsch, H.J., Seiberl, W., Arndt, R., Romer, A., Schneiderbauer, K., Sendlhofer, G.P., 2000. Geophysical investigations of large landslides in the Carnic Region of southern Austria. Engineering Geology 56, 373–388. 46. Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., Pesci, A., 2003. Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca' di Malta landslide (northern Apennines, Italy). Engineering Geology 68, 103–121. 47. McCarter W.J., 1984, 'The electrical resistivity characteristics of compacted clays', Geotechnique, Vol. 34, No. 2, pp.263-267. 48. Parkhomenko, E. I. 1967. Electrical Properties of Rocks, G. V. Keller, transl. New York:Plenum. 49. Perrone, A., Vassallo, R., Lapenna, V., Di Maio, C., 2008. Pore water pressures and slope stability: a joint geophysical and geotechnical analysis. Journal of Geophysics and Engineering 5, 323–337. 50. Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., Sdao, F., 2004. High-resolution electrical imaging of the Varco d'Izzo earthflow (southern Italy). Journal of Applied Geophysics 56, 17–29. 51. Pescatore, T., Renda, P., Tramutoli, M., 1988. Rapporti tra le unità lagonegresi e le unità Sicilidi nella media valle del Basento (Appennino lucano). Memoriali della Società Geologica Italiana 41, 353–361. 52. Petersson, W., 1907. Om malmso¨ kande medelst elektricitet.Jern-Kontorets Annaler 2–3, 153–171. 53. Piccarreta, M., Capolongo, D., Boenzi, F., 2004. Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy context. International Journal of Climatology 24, 907–922. 54. Polemio, M., Sdao, F., 1999. Landslide hazard and heavy rains in southern Apennines (southern Italy): the case of Avigliano urban area. Engineering Geology 53, 297–309. 55. Prokešová, R., Kardoš, M., Medveďová, A., 2010. Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115, 90–101. 56. Rapisarda, F., 2007. Landslide analysis in Apennine chain areas. Landslides 4, 75–83. 57. Rhoades , D., Rendon, G. A., and Stewart, G. R. (1976). Planta 129, 203-210. 58. Rhoades J.D., Manteghi N.A., Shouse P.J. and Alves W.J., 1989, Soil electrical conductivity and soil salinity: new formulations and calibrations', Soil Science Soc.Am.J.53, p.433-439 59. Rhoades, J.D., Chanduvi, F., Lesch, S., 1999b. Soil salinity assessment: methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper #57. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 1–150. 60. Rubin, Y., and Hubbard, S. S., eds., 2005,Hydrogeopysics, Springer, Dordrecht, The Neterlands. 61. Sauer, M. C., et al., 1955, Electrical Conductance of Porous Plugs Ion Exchange Resin-Solution System, Industrial and engineering chemistry, Vol.47,No. 10,p. 2187-2193. 62. Scandone, P., 1972. Studi di geologia lucana: Carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Bollettino Società dei Naturalisti in Napoli 81, 225–300. 63. Schrott, L., and Sass, O., 2008, Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies: Geo-morphology, v. 93, no. 1, p. 55–73. 64. Schlumberger, C., 1920. E´tude sur la Prospection E´lectrique du Sous-sol, Gaultier -Villars et Cie., Paris, 94pp. 65. Screedeep S., Reshma A.C., and Singh D.N., 2004, 'Measuring soil electrical resistivity using a resistivity box and a resistivity probe ', Geotechnical Testing Journal, Vol. 27, No. 4, pp.411-415. 66. Stogryn, A., 1971. Equations for calculating the dielectric constant of salinewater. IEEE Trans. Microwave Theory Technol. MIT 19, 733–736. 67. Squarzoni, C., Delacourt, C., Allemand, P., 2003. Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Engineering Geology 68, 53–66. 68. Waxman, M., Smits, L., 1968. Electrical conductivities in oil-bearing shaly sands. SPE Journal, vol. 8, p. 107–122. 69. Travelletti, J., Demand, J., Jaboyedoff, M., Marillier, F., 2010. Mass movement characterization using a reflexion and refraction seismic survey with the sloping local base level concept. Geomorphology 116, 1–10. 70. U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils, USDA Handbook 60.U.S. Government Printing Office, Washington, DC, USA, pp. 1–160.
摘要: This study interprets the sliding mechanism and the causes of You-Ye-Lin landslide (Ruili Village, Meishan Township, Chiayi County) based on the in-situ investigation, geological boring, electricity resistance geophysical exploration and field observations. Moreover, according to the case histories applying the electricity resistance techniques on slope stability interpretation, this study analyzes and integrates the theories and principles of the techniques for future engineering practice. Using the Resistivity Image Profiles (RIP) of You-Ye-Lin landslide, this study interprets the potential sliding surface of the landslide and compares with those obtained from inclinometer observations and slope stability analysis. It can be found that potential sliding surface of interpretation based on the RIP is in good agreement with those of monitoring and stability analysis. In conclusions, it is feasible to use RIP with distribution of low resistivity (potential instability with high water content) to interpret the potential sliding surface in engineering practices.
本研究首先依據現地調查、地質鑽探、地電阻地球探測、以及監測資料來判釋幼葉林崩塌地之運動機制及致災原因。再者,依據地電阻應用於判釋坡地穩定之實務案例,歸納分析其原理並應用於本研究。 採用嘉義縣梅山鄉瑞里村幼葉林地滑區為樣區,依據其地層材料測得之電阻率以及地電阻影像剖面,可判釋可能潛在滑動面,並與穩定分析潛在滑動面進行比對,可發現兩者具有相當之吻合度。另外,再依據傾斜管觀測成果,可確認實際潛在滑動面,並再次與穩定分析潛在滑動面進行比對,可得更佳之吻合度。 因此,依據地電阻影像剖面之低電阻分布區(高含水量之潛在不穩定區)來判釋可能潛在滑動面,在實務上方便可行。
URI: http://hdl.handle.net/11455/95900
文章公開時間: 2021-07-30
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.