Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95932
標題: 細粒土壤之紋溝沖蝕量化推估研究
The Research of Rill Erosion Quantitative Estimation for Fine Sediments
作者: CHEN, CHING-MIN
陳敬旻
關鍵字: Rill Erosion
Overland Flow
Fine Sediment
小溝沖蝕
坡面流
細顆粒土壤
引用: 1. 马小玲, 张宽地, 董旭, 杨明? & 杨帆(2016) 黄土坡面细沟 流土壤侵蚀机理研究, 农业机械学报(9):134-140. 2. 牛耀彬, 高照良, 李永红, 罗珂, 袁雪红, 杜捷 & 张翔(2016),工程堆积体坡面细沟形态发育及其与产流产沙量的关 系,农业工程学报 ,32(19),頁 154-161。 3. 王爱娟, 符素华, 冯克? & 朱小立(2016),放水?刷条件下紫 色土细沟侵蚀特征, 中国水土保持科学,14(5):23-28. 4. 王鹏飞, 郑子成 & 张锡洲(2015),玉米苗期横垄坡面地表糙 度的变化及其对细沟侵蚀的影响,水土保持学报,29(2),頁 30-34。 5. 刘和平, 王秀颖 & 刘?元(2011),人工模?降雨下细沟与细 沟间流速的沿程分布, 地理研究,30(9):1660-1668. 6. 刘青泉, 李家春, 陈力 & 向华(2004),坡面流及土壤侵蚀动力 学(I)------坡面流,力学进展,34(3),頁 360-372。 7. 刘青泉, 李家春, 陈力 & 向华(2014),坡面流及土壤侵蚀动力 学(II)------土壤侵蚀,力学进展,34(4),頁 493-506。 8. 刘淼, 杨明? & 张风?(2015),黄土坡面细沟发育及细沟与 细沟间侵蚀比率研究 ,水土保持学报,29(1),頁 12-16。 9. 吴淑芳, 刘政鸿, 霍云云 & 孟庆香(2015),黄土坡面细沟侵蚀发育过程与模?,土壤学报,52(1),頁 48-56。 10. 张科利 & 唐克丽(2000) 黄土坡面细沟侵蚀能力的水动力学 试验研究土壤学报,37(1):9-15. 11. 张攀 & 姚文艺(2014a),坡面细沟形态与侵蚀产沙间的量化响 应研究进展,中国水土保持 (2)。 12. 张攀 & 姚文艺(2014b),坡面细沟形态与侵蚀产沙间的量化响 应研究进展, 中国水土保持(2):39-41. 13. 张攀, 姚文艺 & 肖培青(2014),黄土坡面细沟形态及其量化 参数特征, 水土保持通报,34(5):15-17. 14. 沈海鸥, 郑粉莉, 温磊磊, 卢. 嘉 & 韩. 勇(2014),黄土坡面 细沟侵蚀形态试验,生态学报,34(19),頁 5514-5521。 15. 和继军, 吕烨, 宫辉力 & 蔡?国(2013),细沟侵蚀特征及其产 流产沙过程试验研究,水利学报,44(4)。 16. 陈俊杰, 孙莉英, 蔡崇法, 刘俊体 & 蔡?国(2013),不同土壤 坡面细沟侵蚀差异与其影响因素, 土壤学报 ,50(2),頁281-288。 17. 陈浩, 王占?, 刘俊娥, 谭贞学, 袁殷 & 王莎(2011),黄土坡 面细沟水流含沙量变化过程试验研究, 水土保持学报,25(5):8-11. 18. 赵宇, 陈晓燕, 米宏星 & 莫斌(2014),基于体积法对黄土细沟侵蚀沿程分布模?的研究,土壤学报,51(6),頁 1234-1241。 19. 袁殷, 王占?, 刘俊娥, 谭贞学, 陈浩 & 王莎(2010),黄土坡 面细沟径流输沙过程试验研究, 水土保持学报,24(5):88-91. 20. 財團法人成大研究發展基金會(2014),「103 年度阿公店水庫空 庫防淤泥砂觀測及成效評估」(Sediment Obeservation and Efficiency Evaluation for Desiltation of Agongdian Reservoir by Using Empty Flushing in 2014),經濟部水利署南區水資源局。 21. 盛贺伟, 孙莉英 & 蔡?国(2016),黄土坡面片蚀过程稳定含 沙量及其影响因素, 地理科学进展,35(8):1008-1016. 22. 磐誠工程顧問有限公司(2016),「阿公店水庫減淤方案規劃- 年度工作成果報告」(經濟部水利署南區水資源局)。 23. 謝正倫 & 詹錢登(1999)水庫凝聚性沉滓之流變關係研究. 24. Aksoy, H., E. Eris & G. Tayfur, 2016, Empirical Sediment Transport Models Based On Indoor Rainfall Simulator And Erosion Flume Experimental Data, Land Degradation & Development. 25. ASTM-C136/C136M-14, 2014, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, Astm,04.02. 26. ASTM-D422-63(2007)e2, 1998, Standard Test Method for Particle- Size Analysis of Soils, Astm. 27. ASTM-D854-14, 2014, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Astm,04.08. 28. ASTM-D2216-10, 2010, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, Astm,04.08. 29. ASTM-D2487-11, 2011, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), Astm,35(4). 30. ASTM-D2862-16, 2016, Standard Test Method for Particle Size Distribution of Granular Activated Carbon, Astm,15.01. 31. ASTM-D2974-14, 2014, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils, Astm,04.08. 32. ASTM-D4318-10e1, 2010, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, Astm,4.08. 33. ASTM-D4513-11, 2011, Standard Test Method for Particle Size Distribution of Catalytic Materials by Sieving, Astm,05.06. 34. ASTM-D6913-04(2009)e1, 2009, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, Astm,04.09. 35. ASTM-F1632-03(2010), 2010, Standard Test Method for Particle Size Analysis and Sand Shape Grading of Golf Course Putting Green and Sports Field Rootzone Mixes, Astm,15.07. 36. Bako, A. N., F. Darboux, F. James & C. Lucas, 2016, Raindrop Interaction in Interrill Erosion: a Probabilistic Approach. 37. Ban, Y. Y., T. W. Lei, Z. Q. Liu & C. Chen, 2016, Comparative study of erosion processes of thawed and non-frozen soil by concentrated meltwater flow, Catena,148:153-159. 38. Berger, C., M. Schulze, D. Rieke-Zapp & F. Schlunegger, 2010, Rill development and soil erosion: a laboratory study of slope and rainfall intensity, Earth Surface Processes and Landforms,35(12):1456–1467. 39. Cao, L., Y. Liang, Y. Wang & H. Lu, 2015, Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall, Catena,129:1–8. 40. Cao, L., K. Zhang & Y. Liang, 2014, Factors affecting rill erosion of unpaved loess roads in China, Earth Surface Processes and Landforms,39(13):1812–1821. 41. Chen, X.-y., Y. Zhao, H.-x. Mi & B. Mo, 2016, Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method, CATENA,136:135-140. 42. Chen, X. Y., Y. H. Huang, Y. Zhao, B. Mo & H. X. Mi, 2015, Comparison of loess and purple rill erosions measured with volume replacement method, Journal of Hydrology,530:476–483. 43. Chen, X. Y., Y. Zhao, B. Mo & H. X. Mi, 2014, An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow, Plos One,9(6):e99660-e99660. 44. Deshpande, V. V. & M. S. Telang, 1950, Pipet Method of Sedimentation Analysis. Rapid Determination of Distribution of particle Size, Analytical Chemistry,22(6):840-841. 45. Dong, Y., T. Lei, S. Li, C. Yuan, S. Zhou & X. Yang, 2015a, Effects of rye grass coverage on soil loss from loess slopes, International Soil & Water Conservation Research,3(3):170-182. 46. Dong, Y., F. Li, Q. Zhang & T. Lei, 2015b, Determining ephemeral gully erosion process with the volume replacement method, Catena,131:119-124. 47. Dong, Y., X. Zhuang, T. Lei, Z. Yin & Y. Ma, 2014, A method for measuring erosive flow velocity with simulated rill, Geoderma,s 232–234:556-562. 48. Fang, H., L. Sun & Z. Tang, 2015, Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils, Hydrological Processes,29(11):2649–2658. 49. Fox, D. M. & R. B. Bryan, 2000, The relationship of soil loss by interrill erosion to slope gradient, Catena,38(3):211-222. 50. Fox, G. A., A. Sheshukov, R. Cruse, R. L. Kolar, L. Guertault, K. R. Gesch & R. C. Dutnell, 2016, Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion, Environmental Management,57(5):945-955. 51. H.M. Cadell, B. S., 1886, The Dumbartonshire Highlands, The Scottish Geographical Magazine,2(6): 337-347 52. He, J.-j., L.-y. Sun, H.-l. Gong & Q.-g. Cai, 2017, Laboratory studies on the influence of rainfall pattern on rill erosion and its runoff and sediment characteristics, Land Degradation & Development. 53. He, J.-j., L.-y. Sun, H.-l. Gong, Q.-g. Cai & L.-J. Jia, 2016, The characteristics of rill development and their effects on runoff and sediment yield under different slope gradients, Journal of Mountain Science,13(3):397-404. 54. Huang, Y., X. Chen, B. Luo, L. Ding & C. Gong, 2015, An experimental study of rill sediment delivery in purple soil, using the volume-replacement method, Peerj,3(1):e1220. 55. Li, G., F. Zheng, J. Lu, X. Xu, W. Hu & Y. Han, 2016, Inflow Rate Impact on Hillslope Erosion Processes and Flow Hydrodynamics, Soil Science Society of America Journal,80(3):711. 56. Li, Z. W., G. H. Zhang, R. Geng & H. Wang, 2015, Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China, Biosystems Engineering,129:248-257. 57. Liu, Q. J., J. An, G. H. Zhang & X. Y. Wu, 2016, The effect of row grade and length on soil erosion from concentrated flow in furrows of contouring ridge systems, Soil & Tillage Research,160:92-100. 58. Mahmoodabadi, M., H. Ghadiri, C. Rose, B. Yu, H. Rafahi & H. Rouhipour, 2014, Evaluation of GUEST and WEPP with a new approach for the determination of sediment transport capacity, Journal of Hydrology,513(513):413-421. 59. Momm, H. G., R. R. Wells & R. L. Bingner, 2015, GIS technology for spatiotemporal measurements of gully channel width evolution, Natural Hazards,79(1):1-16. 60. Moore, I. D. & G. J. Burch, 1986, Sediment Transport Capacity of Sheet and Rill Flow: Application of Unit Stream Power Theory, Water Resources Research,22(8):1350-1360. 61. Nouhou Bako, A., F. Darboux, F. James, C. Josserand & C. Lucas, 2016, Pressure and shear stress caused by raindrop impact at the soil surface: Scaling laws 2 depending on the water depth, Earth Surface Processes & Landforms,41(9):n/a-n/a. 62. Peñuela, A., F. Darboux, M. Javaux & C. Bielders, Evolution of overland flow connectivity in bare agricultural plots. In: EGU General Assembly, 2016. 63. Peng, W., Z. Zhang & K. Zhang, 2015, Hydrodynamic characteristics of rill flow on steep slopes, Hydrological Processes,29(17):3677– 3686. 64. Popa, N., 2017. Sheet and Rill Erosion. Springer International Publishing. 65. Qin, C., H. Wu, F. Zheng, X. Xu & F. Bian, 2016, Temporal and Spatial Variation Characteristics of Rill Erosion and Hydrodynamic Parameters on Loessial Hillslope,47(8):146-154. 66. Samani, A. N., Q. Chen, S. Khalighi, R. J. Wasson & M. R. Rahdari, 2016, Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation, Hydrology & Earth System Sciences Discussions,20(7):3005-3012. 67. Shen, H., F. Zheng, L. Wen, Y. Han & W. Hu, 2015a, Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope, Soil and Tillage Research,155:429-436. 68. Shen, H., F. Zheng, L. Wen, J. Lu & Y. Jiang, 2015b, An experimental study of rill erosion and morphology, Geomorphology,231:193-201. 69. Shen, N., Z. Wang & S. Wang, 2016, Flume experiment to verify WEPP rill erosion equation performances using loess material, Journal of Soils and Sediments,16(9):2275-2285. 70. Shit, P. K., G. S. Bhunia & R. Maiti, 2015, An experimental investigation of rill erosion processes in lateritic upland region: A pilot study. 71. Silva, L. F. d., E. A. Cassol, J. D. Murlikic, B. P. d. Silvad & M. L. Pandolfo, 2016, Susceptibility to rill erosion of a 12-year-old soil reconstructed after coal mining, International Journal of River Basin Management,14(4):379-384. 72. Sobotková, V. & M. Dumbrovský, 2015, The new volumetric approach for field measurements of rill erosion, Eurasian Journal of Soilence,4(2):94-99. 73. Stefanovic, J. R. & R. B. Bryan, 2009, Flow energy and channel adjustments in rills developed in loamy sand and sandy loam soils, Earth Surface Processes and Landforms,34(1):133-144. 74. Sun, L., H. Fang, D. Qi, J. Li & Q. Cai, 2013, A review on rill erosion process and its influencing factors, Chinese Geographical Science,23(4):389-402. 75. Sun, L., G. H. Zhang, L. L. Luan & F. Liu, 2016, Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China, Catena,145:239-245. 76. Taguas, E. V., 2015, Characteristics and importance of rill and gully erosion: a case study in a small catchment of a marginal olive grove, Rozhledy,41(1):28-36. 77. Talebi, A., R. Hajiabolghasemi, M. R. Hadian & N. Amanian, 2015, Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes, Hydrological Processes,30(12):n/a-n/a. 78. Vaezi, A. R., H. Hasanzadeh & A. Cerdà, 2016, Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran, Catena,142:221-232. 79. Wang, Y., J. H. Zhang, Z. H. Zhang & L. Z. Jia, 2016, Impact of tillage erosion on water erosion in a hilly landscape, Science of the Total Environment,551-552:522-532. 80. Wang, Z., X. Yang, J. Liu & Y. Yuan, 2015, Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope, Journal of Soil & Water Conservation,70(1):36- 44. 81. Wells, R. R., H. G. Momm, S. J. Bennett, K. R. Gesch, S. M. Dabney, R. Cruse & G. V. Wilson, 2016, A Measurement Method for Rill and Ephemeral Gully Erosion Assessments, Soil Science Society of America Journal,80(1). 82. Wilson, H. M., 1900, A Dictionary of Topographic Forms, Journal of the American Geographical Society of New York,32(1):32-41. 83. Wu, B., Z. Wang, N. Shen & S. Wang, 2016, Modelling sediment transport capacity of rill flow for loess sediments on steep slopes, Catena,147:453-462. 84. Xu, X., F. Zheng, C. Qin, H. Wu & G. V. Wilson, 2017, Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding, Catena,149:417–425. 85. Zhang, L. T., Z. L. Gao, S. W. Yang, Y. H. Li & H. W. Tian, 2015a, Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: A case study of typical steep spoil heap, Catena,128:108-121. 86. Zhang, P., H. Tang, W. Yao, N. Zhang & L. V. Xizhi, 2016, Experimental investigation of morphological characteristics of rill evolution on loess slope, CATENA,137:536-544. 87. Zhang, Q., Y. Dong, F. Li, Z. Yang, X. Huang & T. Lei, 2015b, Estimation of the sediment transport capacity in eroding ephemeral gullies with a flume experiment method, Catena. 88. Zhang, Q., Y. Dong, F. Li, A. Zhang & T. Lei, 2014, Quantifying detachment rate of eroding rill or ephemeral gully for WEPP with flume experiments, Journal of Hydrology,519:2012-2019. 89. Zhang, X. C. J., 2016, Evaluating Water Erosion Prediction Project Model Using Cesium-137-Derived Spatial Soil Redistribution Data, Soil Science Society of America Journal. 90. Zheng, F., X. He, X. Gao, C. Zhang & K. Tang, 2005, Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China, Agriculture Ecosystems & Environment,108(1):85- 97. 91. Zheng, Z. C., S. Q. He & F. Q. Wu, 2014, Changes of soil surface roughness under water erosion process, Hydrological Processes,28(12):3919–3929.
摘要: Researchers have been interested in rill erosion for long times, building lots of empirical or semi-empirical models, such as Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation (RUSLE), and Modified Universal Soil Loss Equation (MUSLE). However, the applicability of the empirical models relies heavily on the localized database of the input parameters. But some researchers tried to derive the physical equation about rill erosion in recent years. The soil used in this study was the mudstone in A-Gong-Dian Reservoir. The soil was oven-dried before being crushed and passed through the #40 sieve. The sieved soil was used to carry out basic geotechnical tests such as specific gravity, Atterbreg limits, moisture content, organic matter, particle size distribution, and pH value and conductivity of the pore water. As the results, the soil is classified as loam in soil texture triangle, and ML or OL based on Atterbreg limits with fine sediments (size range from 0.001~1mm, median diameter is 0.02mm) and low organic. The specific gravity of soil ranged from 2.38 to 2.74. Then the overland flow erosion experiments were carried out using an erosion box which was 0.82 meters long, 0.25 meters wide, and 0.21 deep. The soil was filled in the box with a predetermined bulk density of 1.35 g/cm3. Prior to the erosion experiments, different slope gradients and flow rates were adjusted and calibrated; specifically, this research conduct the rill experiments under two flow rates (0.4 and 0.8 L/min) in constant water heads and three slope gradients (<0.01%, 5%, and15%) for ten hours. Soil loss, rill area, rill length were be found that it will be developed with time. The soil erosion experiment were conducted under the same flow rates and slope gradients but in different time, so relationship equation between soil loss and two factors were different. In this study, we not only tried fit empirical equation, and also involved time factor to fit curve. Qualified equations were SL(Kg)=-1.14-2.82×〖10〗^(-3) t+7.32×〖10〗^(-2) tQ+7.59×〖10〗^(-4) tS,R^2=0.91,SL=0.011〖A_(total.rill)〗^1.09,R^2=0.78, which can be applied in overland flow erosion analysis and disaster remediation, where SL is soil loss in Kg; t is time in minutes; Q is flow rates in Liter per minute; S is slope gradient in %; A_(total.rill) is total rill area in squared centimeter.
坡面流沖蝕研究已有多年歷史,發展出許多經驗或半經驗公式,例 如著名的通用土壤流失公式(Universal Soil Loss Equation, USLE) 及 其修正版本如 RUSLE 和 MUSLE 等。然而,經驗公式多受的域限制, 需針對特定的區及其氣候條件或沖蝕類型進行研究,調查校正每個參 數,建立完整資料庫予以支持。近年來有學者嘗試推導坡面流沖蝕的物 理公式。本研究以沖蝕箱進行細粒土壤之坡面流沖蝕試驗,探討沖蝕力 (流量)與地形(坡度)對坡面沖蝕之影響,以發展坡面紋溝沖蝕之量化公 式。本研究採用阿公店水庫之庫區底泥,其土壤性質屬於泥岩,顆粒細 小。現地土壤經過篩處理後,先進行土壤特性基本試驗,如比重、阿太 保限度、含水量、有機質含量、粒徑分佈及孔隙水 pH 值和導電度等。 接著進行坡面流沖蝕試驗,以預設容積密度將土壤分層填入沖蝕箱 (0.82 m×0.25 m×0.21 m),以定水頭點源方式進行不同流況與坡度之十 小時之沖蝕試驗,觀測未飽程土體,在坡面流沖蝕下之紋溝發展過程。 實驗結果指出,土壤粒徑介於 0.001 -- 1 mm 之間,中值粒徑為 0.02 mm,在三角質地圖中屬於壤土且有機質含量低(0.3%),比重介於 2.38 -- 2.74 之間,依阿太保限度分類屬於 ML 和 OL。藉由紋溝之發展過程與沖蝕 量測量,本研究發現土壤流失量、紋溝長度、紋溝寬度會隨著時間發展, 因此對於相同坡度和流量下,會因操作時間不同,會造成不同的量化公式,使得量化公式並不好使用,因此本研究不僅擬合了前人研究的量化 關係式,加入時間參數進行分析,提出量化關係式:SL(Kg)=-1.14-2.82×〖10〗^(-3) t+7.32×〖10〗^(-2) tQ+7.59×〖10〗^(-4) tS,R^2=0.91,SL=0.011〖A_(total.rill)〗^1.09,R^2=0.78,其中SL為沖蝕十小時的土壤流失量,單位為公斤;Q為原預設之流量,單位為L min−1;S為原預設之坡度,單位為%;Atotal.rill為實驗結束後之紋溝總面積之合,單位為cm2。研究成果可應用於坡面 流沖蝕分析與災害防治。
URI: http://hdl.handle.net/11455/95932
文章公開時間: 2017-02-10
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.