Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95933
標題: 細粒泥砂之物理性質與沖刷啟動特性研究
Investigation of geotechnical properties and erosion characteristic of fine-grained sediments
作者: Jyun-Yu Su
蘇俊毓
關鍵字: Soil physical property
Hydraulic desilting
Shields parameter
土壤物理特性
水力排砂
Shields參數
引用: 中文部分 1. 林俐玲、董小萍 (1996),土壤物理學實習手冊,國立中興大學水土保持學系。 2. 萬鑫森 譯 (1987),基礎土壤物理學,初版二印,國立編譯館主編,茂昌圖書有限公司發行。 3. 杜鳳棋、王鴻烈 (2010),流體力學,第六版,高立圖書有限公司發行。 4. 周雲龍、洪文鵬 (2006),工程流體力學,第三版,中國電力出版社發行。 5. 經濟部水利署南區水資源局 (2015),104年度阿公店水庫空庫防淤泥砂觀測及成效評估。 6. 經濟部水利署南區水資源局 (2014),103年度阿公店水庫空庫防淤泥砂觀測及成效評估。 7. 行政院農業委員會水土保持局 (2013),水土保持手冊。 8. 王忖、王超 (2010),含挺水植物和沉水植物水流紊動特性,水科學進展,第21卷,第6期,第816-822頁。 9. 洪安宇、王正中、趙延風 (2015),層流區Shields曲線分布規律試驗,水科學進展,第26卷,第6期,第837-845頁。 10. 林佳燕、蔡義誌、林俐玲 (2009),土壤粒徑分析實驗方法之比較,中華水土保持學報,第41卷,第2期,第139-152頁。 11. 許盈松、蔡俊鋒、魏綺瑪、黃宏莆 (2007),水庫泥沙濁度與濃度率定關係研究-以石門水庫為例,農業工程學報,第53卷,第1期,第62-71頁。 12. 李鎮洋、傅桂霖、蔡明發、簡以達、許振崑、林伯勳 (2015),應用沖蝕針量測數據評估曾文水庫集水區土壤沖蝕抑制成效,財團法人中興工程顧問社,中興工程,第129期,2015年10月,第9-18頁。 13. 謝正倫、詹錢登、陳弘殷、王志賢 (2001),水庫凝聚性沉滓之流變關係研究,行政院國家科學委員會專題研究計畫成果報告,計劃編號:NSC-89-2211-E-006-072。 14. 賴進松 (2001),行政院國家科學委員會專題研究計畫成果報告 凝聚性沉滓水庫之排砂策略研究(III)----子計畫六:水庫洩降排砂機制之研究(III),計劃編號:NSC-89-2211-E-002-050。 西文部分 1. ASTM C136 (2001). 'Standard test method for sieve analysis of fine and coarse aggregate.' West Conshohochen, P., American Society for Testing and Materials. 2. ASTM D422-63 (2002). 'Standard test method for particle-size analysis of solids.' West Conshohochen, P., American Society for Testing and Materials. 3. ASTM D3418 (2005). 'Standard test method for liquid limit, p.l., and plasticity index of soils.' West Conshohochen, P., American Society for Testing and Materials. 4. ASTM D 854 (2006). 'Standard test methods for specific gravity of soil solids by water pycnometer' West Conshohochen, P., American Society for Testing and Materials. 5. ASTM D 1140 (2000). 'Standard test methods for amount of material in soils finer than the No. 200 (75-µm) sieve.' West Conshohochen, P., American Society for Testing and Materials. 6. ASTM D 2216 (2005). 'Moisture content of soil.' West Conshohochen, P., American Society for Testing and Materials. 7. Briaud, J. L., and Ting, F. C. K. (2001). 'Erosion function apparatus for scour rate predictions.' J. Geotech. Geoenviron., 127(2), 105-113. 8. Gauckler, P. (1867). 'Études Théoriques et Pratiques sur l'Écoulement et le Mouvement des Eaux.' Comptes Rendues de l'Académie des Sciences, Paris, France, Tome 64, pp. 818–822. 9. Gee, G. W., and D. Or. (2002). 'Particle-size analysis.' P.255-293. In Dane, J. H. and Topp, G. C. (ed.). 'Methods of Soil Analysis.' Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. 10. Guo, J. (2002). 'Hunter Rouse and Shields Diagram.' Advances in Hydraulics and Water Engineering, 1096-1098. 11. Houwing, E. J. (1999). 'Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden sea coast.' Estuarine, Coastal and Shelf Science, 49, 545-555. 12. Jesse, R., Rich, J., Doug, G., and Wilbert, L. (1998). 'Effects of particle size and bulk density on erosion of quartz particles.' J. Hydraul. Eng., 124(12), 1261-1267. 13. Julien, P. Y. (1995). 'Erosion and Sedimentation.' Textbook. 14. Kimiaghalam, N., Clark, S. P., Ahmari, H. (2016). 'An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate.' International Journal of Sediment Research, 31, 1-15. 15. Kothyari, U. C., and Jain, R. K. (2008). 'Influence of cohesion on the incipient motion condition of sediment mixtures.' Water Resour. Res., 44(4), W04410. 16. Krone, R. B. (1999). 'Effects of bed structure on erosion of cohesive sediments.' J. Hydraul. Eng., 125(12), 1297-1301. 17. Larionov, G. A., Bushueva, O. G., Dobrovol'skaya, N. G., Kiryukhina, Z. P., Krasnov, S. F., Litvin, L. F. (2015). 'Effect of gravity on the erosion of model samples.' Eurasian Soil Science, 48(7), 759-763. 18. Manning, R. (1891). 'On the flow of water in open channels and pipes.' Transactions of the Institution of Civil Engineers of Ireland, 20, 161-207. 19. Manning, Francis, S., Thompson, Richard, E. (1991). 'Oilfield Processing of Petroleum.' Vol. 1: Natural Gas, PennWell Books. 20. Mehta, A. J., Hwang, Kyu-Nam, Khare, Y. P. (2015). 'Critical shear stress for mass erosion of organic-rich fine sediments.' Estuarine, Coastal and Shelf Science, 165, 97-103. 21. Otsubo, K., and Muraoka, K. (1988). 'Critical shear stress of cohesive bottom sediments.' J. Hydraul. Eng., 114(10), 1241-1256. 22. Ouafae El Ganaoui, Estelle Schaaff, Patrick Boyer, Muriel Amielh, Fabien Anselmet, Christian Grenz (2007). 'Erosion of the Upper Layer of Cohesive Sediments : Characterization of Some Properties.' J. Hydraul. Eng., 133(9), 1087-1091. 23. Pilditch, C. A., Widdows, J., Kuhn, N. J., Pope, N. D., Brinsley, M. D. (2008). 'Effects of low tide rainfall on the erodibility of intertidal cohesive sediments.' Continental Shelf Research, 28, 1854-1865. 24. Ravisangar, V., Sturm, T. W., and Amirtharajah, A. (2005). 'Influence of sediment structure on erosional strength and density of kaolinite sediment beds.' J. Hydraul. Eng., 131(5), 356-365. 25. Roberts, J., and Jepsen, R. (1998). 'Effects of particle size and bulk density on erosion of quartz particles.' J. Hydraul. Eng., 124(12), 1261-1267. 26. Singh, H. V., and Thompson, A. M. (2016). 'Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds.' Geoderma, 262, 165-173. 27. Stone, M., Emelko, M. B., Droppo, I.G., Silins, U. (2011). 'Biostabilization and erodibility of cohesive sedimentdeposits in wildfire-affected streams.' Water Research, 45, 521-534. 28. Sturm, T. W. (2001). 'Open Channel Hydraulics.' Textbook series in water resources and environmental engineering. McGRaw Hill, New York, second edition. 29. Tan, X. L., Zhang, G. P., Yin, H., Reed, A. H., Furukawa, Y. (2012). 'Characterization of particle size and settling velocity of cohesive sediments affected by a neutral exopolymer.' International Journal of Sediment Research, 27, 473-485. 30. van Ledden, M., van Kesteren, W. G. M., and Winterwerp, J. C. (2004). 'A conceptual framework for the erosion behaviour of sand-mud mixtures.' Cont. Shelf Res., 24(1), 1-11. 31. van Olphen, H. (1977). 'An Introduction to Clay Colloid Chemistry.' John Wiley and Sons, New York, 57-120, second edition. 32. Wang, Y. C., and Sturm, T. W. (2016). 'Effects of Physical Properties on Erosional and Yield Strengths of Fine-Grained Sediments.' Approved for publishing J. Hydraul. Eng.. 33. Wu (2002). 'Investigation of the Hydraulic and Scour Impacts of the Installation of Bridge in River.' National Yunlin University of Science and Technology Research Center for Soil and Water Resources and Natural Disaster Prevention. 34. Yalin, M. S., and Karahan, E. (1979). 'Inception of Sediment Transport.' J. Hydraul. Eng., 105(11), 1433-1443. 35. Zhang, M., Yu, G., Rovere, A. L., Ranzi, R. (2017). 'Erodibility of fluidized cohesive sediments in unidirectional open flows.' Ocean Engineering, 130, 523-530. 36. Zreik, D. A., Krishanappan, B. G., Germaine, J. T., Madsen, O. S., and Ladd, C. C. (1998). 'Erosional and mechanical strengths of deposited cohesive sediments.' J. Hydraul. Eng., 124(11), 1076-1085. 37. Tacplot 360, http://www.tecplot.com/.
摘要: In natural, upper streams carry numerous sediments into reservoirs, resulting in the water storage capacity of reservoirs which is declining as time passes. To understand transporting characteristics of reservoir sediments to bring benefit to the reference of dredging, this research first measures soil physical properties such as moisture content, liquid limit and plastic limit, particle specific gravity, particle size distribution, and organic matter content for the reservoir sediments, and then utilizes circulating and tilting flume to conduct erosion tests. We used reservoir sediments and quartz particles whose size distribution is similar to that of the reservoir sediments, and adjusting different bed slopes of the flume and water discharge to observe the erosion phenomenon of sediments. The bed slopes applied are 0.002, 0.005, 0.008 and the water discharge applied are 400 cm3/s and 500 cm3/s. In each experiment, we measured the two dimensions of flow velocity, turbidity, and sediment height to calculate the erosion rate and the critical shear stress of the soil. The results indicated that median particle size of the reservoir sediments is 0.032mm, specific gravity of the reservoir sediments is 2.56, plasticity index of the reservoir sediments is 3%, and organic matter content of the reservoir sediments is 0.347%. It can be considered as a low plasticity soil, and its texture is similar to loam or silt loam in the textural triangle. The erosion tests show that cases with larger bed slopes and flow rates resulted in higher erosion rates, but not appearing in a linear relationship. In the near-bed zone, the shear stress value doesn't have an obvious relationship to the bed slope and flow rate. The erosion rate of quartz particles is getting down by time passes with a smooth trend. We speculate that the bed intensity will be higher with the deeper soil layer, resulting in the declining erosion rates. Aforementioned phenomenon may also occurred because of obvious erosion phenomenon have been developed in the first two hours of the experiment period, so that there was no obvious variation in soil concentration afterwards. In addition, the larger the depth-averaged shear stress is, the higher is the erosion rate. The erosion rate of reservoir sediments maintained a value for a while, then increased, and then decreased. We speculate that the reservoir sediments have flocculation effect and microbial films on its surface which were scoured during the erosion test; the deeper sediment layer had higher bulk density to resist flushing and resulted in a low erosion rate. Overall, reservoir sediments showed no obvious erosion phenomenon because of its higher erosion threshold. This research shows that the erosion rates of quartz particles are generally much higher than that of the reservoir sediments, under the same flow conditions. It can be speculated that soil texture is one of the most primary factors to influence the erosion rate. Keywords: Soil physical property, Hydraulic desilting, Shields parameter
自然界中上游河川挾帶著大量泥砂進入水庫,使得水庫的貯蓄水量隨著時間經過而日益減少,為了瞭解水庫底泥的傳輸特性以利清淤時之參考,本研究先對水庫底泥就含水量、塑液限、比重、粒徑分析、有機質含量等土壤物理性質進行量測,再利用循環式渠槽進行沖刷試驗,調整不同渠槽坡度和平均流量,觀測沉積層之沖刷現象。 使用的渠槽坡度為0.002、0.005及0.008,平均流量為400 cm3/s及500 cm3/s,於實驗中量測水體之二維流速、濁度值及沉積層高度,並計算土砂的沖蝕率及沖刷啟動臨界剪應力。 實驗結果,水庫底泥土壤的中值粒徑為0.032mm,比重為2.56,塑性指數為3%,有機質含量為0.347%,為一低塑性土壤,而於質地三角圖上其質地近似於壤土或粉砂壤土,而選用之石英砂其中值粒徑亦為0.032mm。水槽沖刷試驗結果顯示渠槽坡度及水流量越大則沖蝕率會增加但並非呈線性關係,而於近床區之剪應力值與坡度及流量大小較無明顯的關係存在。 石英砂的沖蝕率會隨時間而降低,但降低趨勢會減緩,推測其原因為底床抗沖刷能力隨著土層深度越深而增加,因而造成沖蝕率下降,也可能是因為較明顯的沖蝕現象在前兩小時內已發展完全故於此之後較無濃度的變化。就試驗結果來看,渠槽的平均剪應力越大則土砂沖蝕率越大且呈線性正相關。 底泥土壤的沖蝕率為隨時間先維持一定值左右然後升高再降低,推測原因為底泥土壤具絮凝效應且其表面的微生物膜被沖刷掉,在這之後下方土壤因容積密度較高使其抗沖蝕能力較強而造成沖蝕速率減緩,整體來說底泥土壤因臨界剪應力較高導致沖蝕現象並不明顯。 本研究發現在相同實驗條件下石英砂的沖蝕率比底泥土壤大許多,可推測土壤質地為影響沖蝕率最主要的因素之一。 關鍵字:土壤物理特性、水力排砂、Shields參數
URI: http://hdl.handle.net/11455/95933
文章公開時間: 2020-01-17
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.