Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/95980
標題: 平地有機栽培茶樹之茶菁主要成分含量季節性變化與茶類製程中茶葉主要成分含量變化
Seasonal changes in the major composition content of younger leaves and during tea-making process of tea (Camellia sinensis L.) plants grown in organic garden.
作者: Chia-Wen Hou
侯嘉雯
關鍵字: tea
Seasonal
tea-making process

季節
茶葉製程
引用: 王鐘和。2008。作物有機栽培。國立屏東科技大學農園系。p.248。 吳振鐸、楊盛勳。1982。七十年度命名茶樹新品種台茶十二號及台茶十三號試驗報告。臺灣茶業研究彙報 1:1-14。 吳聲舜、朱德民。1999。遮蔭處理對茶樹芽葉生育與品質之影響。臺灣茶業研究彙報18:23-43。 李志仁。2002。茶菁室內靜置萎凋時兒茶素類的變化。茶業專訊41期。行政院農業委員會茶業改良場。pp. 12。 李欣潔、陳冠亨、曾志正。2014。烏龍茶種植海拔高度與其茶湯澀度的關聯性。農林學報 63:107-113。 林木連。2001。茶葉技術推廣手冊 製茶技術。第二版。行政院農業委員會茶業改良場。桃園。台灣。 林木連、蔡右任、張清寬、陳國任、楊盛勳、陳英玲、賴正南、陳玄、張如華。2003。台灣的茶葉。遠足文化。pp. 96-97。 張清寬。2003。茶樹的起源及分類地位。(行政院農委會茶業改良場編)臺灣的茶葉. 遠足文化, 臺北。p.50-65。 楊勝勳、賴正南。1997。臺灣茶葉起源與特色。七星農田水利研究發展基金會。臺北。pp. 80。 陳國任、蔡文福。1992。缺水及不同溫度處理對茶樹芽葉主要化學成分及製茶品質之影響。台灣茶業研究彙報11:45-56。 陳英玲。1987。茶多元酚氧化酶之研究。臺灣茶業研究彙報8:83-90。 蔡憲宗、蔡依真、廖文如、張清寬、王裕文。2003。利用AFLP及RAPD分子標誌分析臺灣茶樹品種(系)遺傳歧異度。臺灣茶業研究彙報 22:17-31。 蔡永生、劉士綸、王雪芳、區少梅。2004。台灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較。台灣茶業研究彙報23:115-132。 蔡永生、區少梅、張如華。1990。不同包種茶官能品質與化學組成之特徵與判別分析。臺灣茶業研究彙報 9:79-97。 蔡永生。1983。不同品種與季節茶葉主要化學成分含量及變異。茶業改良場72年年報。pp.49-51。桃園:臺灣省茶業改良場。 蔡俊明。2007。茶樹品種及其特性。茶樹整合管理。pp. 15-28。農委會藥毒所。 蕭建興、朱德民。2002。小綠葉蟬為害對茶樹芽葉生長及化學成分的影響。臺灣茶業研究彙報 21:33-50。 蕭淑文。2007。台灣六十年茶業技術研究與發展變遷-以「茶業改良場」為中心(1945~2005)。碩士論文。桃園:國立中央大學。 賴正南(編)。2001。茶葉技術推廣手冊-製茶技術.行政院農委會茶業改良場。桃園。90 pp.。 馮鑑淮、陳國任。1995。東部茶樹品種產期、產量化學成分與包種茶品質比較研究。臺灣茶業研究彙報14:27-46。 馮鑑淮、沈明來。1990。茶樹育種提早選種指標的研究II.品種芽葉農藝性狀與產量及綠茶兼包種茶以及紅茶品質之關係。臺灣茶業46研究彙報9:7-20。 農糧署。2015。104年公務統計資料 特用作物生產概況。行政院農業委員會。 Ashrafuzzaman, M., M. R. Islam, M.R. Ismaail, S. M. Shahidullah, and M. M. Hanafi. 2009. Evaluation of six aromatic rice varieties for yield and yield contributing character. Int. J. Agric. Biol. 11: 616-620. Agati, G., Z. G. Cerovic, P. Pinelli, and M. Tattini. 2011. Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ. Exp. Bot. 73: 3-9. Agati, G., and M. Tattini. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytol. 186: 786-793. Alcazar, A., O. Ballesteros, J. M. Jurado, F. Pablos, M. J. Martín, J. L. Vilches, and A. Navalon. 2007. Differentiation of green, white, black, Oolong, and Pu-erh teas according to their free amino acids content. J. Agric. Food Chem. 55: 5960-5965. Ashihara, H. 2015. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review. Nat. Prod. Commun. 10: 803-810. Astill, C., M. R. Birch, C. Dacombe, P. G. Humphrey, and P. T. Martin. 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food Chem. 49: 5340-5347. Benzie, I. F., and Y. T. Szeto. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 47: 633-636. Bonnely, S., A. L. Davis, J. R. Lewis, and C. Astill. 2003. A model oxidation system to study oxidised phenolic compounds present in black tea. Food Chem. 83: 485-492. Bhatia, I. S., and M. R. Ullah.1968. Qualitative and quantitative study of the polyphenols of different organs and some cultivated varieties of tea plant. J. Sci. Food Agric. 19: 535-542. Chen, C. N., C. M. Liang, J. R. Lai, Y. J. Tsai, J. S. Tasy, and J. K. Lin. 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J. Agric. Food Chem. 51: 7495-7503. Chen, P. A., S. Y. Lin, C. F. Liu, Y. S. Su, H. Y. Cheng, J. H. Shiau, and I. Z. Chen. 2015. Correlation between nitrogen application to tea flushes and quality of green and black teas. Sci. Hortic. 181: 102-107. Cloughley, J. B. 1983. Factors influencing the caffeine content of black tea: Part 2-The effect of production variables. Food Chem. 10: 25-34. Deng, W. W., S. Wang, Q. Chen, Z. Z. Zhang, and X. Y. Hu. 2012. Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Physiol. Biochem. 56: 35-40. Erturk, Y., S. Ercisli, M. Sengul, Z. Eser, A. Haznedar, and M. Turan. 2010. Seasonal variation of total phenolic, antioxidant activity and minerals in fresh tea shoots (Camellia sinensis var. sinensis). Pakistan J. Pharm. Sci. 23: 69-74. Hayashi, N., R. Chen, M. Hiraoka, T. Ujihara, and H. Ikezaki. 2010. β-Cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins. J.Agric. Food Chem. 58: 8351-8356. Haslam, E. 2003. Thoughts on thearubigins. Phytochemistry 61-73. Janet, T. C., W. K. John, K. Thomas, M. O. Kelvin, and W. N. Francis. 2015. Effect of seasons on theanine levels in different kenyan commercially released tea cultivars and its variation in different parts of the tea shoot. Food Nutr. Sci. 6: 1450. Jin, J. Q., J. Q. Ma, M. Z. Yao, C. L. Ma, and L. Chen. 2017. Functional natural allelic variants of flavonoid 3', 5'-hydroxylase gene governing catechin traits in tea plant and its relatives. Planta 245: 523-538. Jiang, H. B. 2013. Diversity of tea landraces based on agronomic and quality traits in yunnan province. J. Plant Genet. Res. 14: 634-640. Juneja, L. R., D. C. Chu, T. Okubo, Y. Nagato, and H. Yokogoshi. 1999. L-theanine—a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci. Technol. 10: 199-204. Kim, Y., K. L. Goodner, J. D. Park, J. Choi, and S. T. Talcott. 2011. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129: 1331-1342. Kottur, G., S. Venkatesan, S. Kumar, R. Shanmugasundaram, and S. Murugesan. 2010. Diversity among various forms of catechins and its synthesizing enzyme (phenylalanine ammonia lyase) in relation to quality of black tea (Camellia spp.). J. Sci. Food Agric. 90: 1533-1537. Kähkönen, M. P., A. I. Hopia, H. J. Vuorela, J. P. Rauha, K. Pihlaja, T. S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47: 3954-3962. Marcos, A., A. Fisher, G. Rea, and S. J Hill. 1998. Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. Spectrom. 13: 521-525. Laddi, A., N. R. Prakash, and A. Kumar. 2014. Quality evaluation of black CTC teas based upon seasonal variations. Int. J. Food Sci. Technol. 49: 493-500. Lai, J. A., W. C. Yang, and J. Y. Hsiao. 2001. An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot. Bull. Acad. Sinica (Taiwan) 42: 93-100. Lin, J. K., C. L. Lin, Y. C. Liang, S. Y. Lin-Shiau, and I. M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46: 3635-3642. Lin, Y. S., Y. J. Tsai, J. S. Tsay, and J. K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51: 1864-1873. Lin, J. K., C. L. Lin, Y. C. Liang, S. Y. Lin-Shiau, and I. M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46: 3635-3642. Liang, H., Y. Liang, J. Dong, and J. Lu. 2007. Tea extraction methods in relation to control of epimerization of tea catechins. J. Sci. Food Agric. 87: 1748-1752. Li, Y. H., W. Gu, and S. Ye. 2007. Expression and location of caffeine synthase in tea plants. Russ. J. Plant Physiol. 54: 698-701. Li, S., C. Y. Lo, M. H. Pan, C. S. Lai, and C. T. Ho. 2013. Black tea: chemistry analysis and stability. Food Funct. 4: 10-18. Liu, Y., L. Gao, L. Liu, Q. Yang, Z. Lu, Z. Nie, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J. Biol. Chem. 287: 44406-44417. Mondal, T. K. 2002. Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica 128: 307-315. Muthumani, T., and R. S. S. Kumar. 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 101: 98-102. Mukhtar, H., and N. Ahmad. 2000. Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 71: 1698-1702. Ngure, F. M., J. K. Wanyoko, S. M. Mahungu, and A. A. Shitandi. 2010. Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chem. 115: 8-14. Narukawa, M., H. Kimata, C. Noga, and T. Watanabe. 2010. Taste characterisation of green tea catechins. Int. J. Food Sci. Technol. 45: 1579-1585. Obanda, M., P. O. Owuor, and R. M. Oka. 2001. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404. Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A.L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. J. Food Comp. Anal. 18: 487-501. Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A.L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. J. Food Compo. Anal. 18: 487-501. Perva-Uzunalić, A., M. Škerget, Ž. Knez, B. Weinreich, F. Otto, and S. Grüner. 2006. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605. Roberts, G. R., and G. W. Sanderson. 1966. Changes undergone by free amino‐acids during the manufacture of black tea. J. Sci. Food Agric.17: 182-188. Selvendran, R. R., and S. Selvendran. 1973. Chemical changes in young tea plant (Camellia sinensis L.) tissues following application of fertilizer nitrogen. Ann. Bot. 37: 453-461. Song, R., Kelman, D., K. L. Johns, and A. D. Wright. 2012. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 133: 707-714. Sharma, K., S. S. Bari, and H. P. Singh. 2009. Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase. J. Mol. Catal. B: Enzym. 56: 253-258. Sanderson, G. W., A. S. Ranadive, L. S. Eisenberg, F. J. Farrell, R. Simons, C. H. Manley, and P. Coggon. 1976. Contribution of polyphenolic compounds to the taste of tea. J. Am. Chem. Soc. 14-16 Sari, F., and Y. S. Velioglu. 2013. Changes in theanine and caffeine contents of black tea with different rolling methods and processing stages. Eur. Food Res. Technol. A 237: 229. Tanaka, T., Y. Matsuo, and I. Kouno. 2010. Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol. Sci. 11: 14-40. Takeo, T. 1979. Formation of amino acids induced by ammonia application and seasonal level fluctuation of amino acids contents in tea plant. Study of tea. Chagyogijutsu kenkyu. 56: 70. Too, J. C., T. Kinyanjui, J. K. Wanyoko, and F. N. Wachira. 2015. Effect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis). Food Nutr. Sci. 6: 1014. Tsay, J. S., and W. C. Chang. 2001. Effects of agitation on tea flush during withering process of Paochong tea. Proceedings of the 2001 International Conference on O-CHA (Tea) Cult. Sci. In: Shizuoka, Japan. Session II. 98-100. Wang, L. Y., K. Wei, Y. W. Jiang, H. Cheng, J. Zhou, W. He, and C. C. Zhang. 2011. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233: 1049-1055. Wei, K., L. Wang, C. Zhang, L. Wu, H. Li, F. Zhang, and H. Cheng. 2015. Transcriptome analysis reveals key flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis. PLoS Biol. 10: e0137925. Wei, K., L. Wang, J. Zhou, W. He, J. Zeng, Y. Jiang, and H. Cheng. 2011. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem. 125: 44-48. Xia, E. H., H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim, and H. Huang. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol. Plant. 10: 866-877. Yang, D. J., L. S. Hwang, and J. T. Lin. 2007. Effects of different steeping methods and storage on caffeine, catechins and gallic acid in bag tea infusions. J. Chromatogr. A 1156: 312-320. Zhu, T., J. Zhang, T. Meng, Y. Zhang, J. Yang, C. Müller, and Z Cai. 2014. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 73: 106-114.
摘要: 茶樹 (Camellia sinensis L.)在臺灣多種植於中高海拔之丘陵地區或山地,相對地,平地之氣候環境較不利於茶樹生長及茶菁品質。本研究為評估發展平地有機茶園之可行性,乃調查平地有機茶園之茶菁主要成分季節性變化,試驗採用金萱、青心烏龍、紅玉與紅韻等四品種,種植於海拔76 m之興大有機茶園內,於2016年2月至11月間,分為春末(5月)、夏末(8月)、秋末(11月)、冬末(2月)四個季節進行茶菁之取樣,分析茶菁主要成分,包括葉綠素、咖啡因、茶胺酸、總多元酚及個別兒茶素之變化。並進一步分析四品種茶樹葉片主要成分與氣候因子的相關性。試驗結果顯示四品種之葉綠素含量均以春末較高,夏末較低;咖啡因含量則以春末和夏末較高,冬末較低,且各品種季節間變化顯著,含量變化主要與溫度有關,部分受到日照、雨量與相對濕度影響;不同季節之茶胺酸含量變化在四個品種之間表現無規律性與一致性;總多元酚季節性變化僅金萱達顯著差異,依序為春末和夏末>秋末>冬末。茶菁中非酯型兒茶素以表沒食子兒茶素(epigallocatechin, EGC)所佔比例最大,其次是表兒茶素(epicatechin, EC),而兒茶素(catechin, C)及沒食子兒茶素(gallocatechin, GC)所佔比例最小。茶菁EGC含量大致上均以春末最高,冬末最低,但金萱則以夏末最高;其中金萱之EGC含量與雨量、相對溼度和最低溫度三者呈現顯著正相關。酯型兒茶素以表沒食子兒茶素沒食子酸酯(epigallocatechingallate, EGCG)所佔比例較大,其次是表兒茶素沒食子酸酯(epicatechingallate, ECG),而以沒食子兒茶素沒食子酸酯(gallocatechin gallate, GCG)所佔比例最小。EGCG含量皆在冬末時較低,在春末較高,唯金萱在夏末較高。小葉種金萱和青心烏龍之EGCG含量僅分別與雨量和最高溫度呈現顯著正相關;至於紅玉之EGCG含量與光照、平均溫度和最高溫度三者呈現顯著正相關;而紅韻則與最低溫度呈顯著正相關。 本研究探討四種茶類在各製程中茶菁主要成分之變化,結果發現綠茶、包種茶、烏龍茶和紅茶製程中,各製程基本上並未顯著改變咖啡因含量;總多元酚含量在室內萎凋過程中下降;在殺菁過程增加,之後在揉捻過程則會再提高含量,而在紅茶醱酵過程減少。 本研究進一步探討在紅茶製程中不同醱酵時間是否改變茶葉中各成分含量的變化,發現在6小時的醱酵過程中,咖啡因與總多元酚的含量均無顯著變化;非酯型兒茶素EGC、EC和GC的含量有顯著下降;酯型兒茶素ECG的含量亦隨著醱酵時間顯著下降,而EGCG的含量雖略有下降,但未達顯著差異。茶黃質、茶紅質和茶褐質含量的均顯著增加。
Tea (Camellia sinensis L.) plants are commonly planted in the middle or high altitude of areas or mountains in Taiwan for acquiring younger leaves with high quality as crude material for tea making. Relatively, the climatic environment of the level ground is more unfavourable to the growth of tea and its quality. In order to evaluate the development of tea plants in level ground, the seasonal changes in the major composition content of younger leaves of tea were investigated. In this study, four tea varieties (Jinxuan, Chin-Shin Oolong, Hongyu, and Hongyun) planted in the organic tea garden of the National Chung Hsing University, at an altitude of 76 meters were used as materials. Samples were collected from February to November, 2016, including late winter, late spring, late summer and late autumn. The content of major compositions including chlorophyll, caffeine, theanine, total polyphenols and individual catechins in younger leaves of tea plant were determined, and the correlation coefficient between major composition content and each climate factor was analyzed. These results showed that the contents of chlorophyll in four tea cultivars were higher in late spring, and lower in late summer, as well as the caffeine content was higher in the late spring and late summer, and lower in late winter. The caffeine content in younger leaves for the four varieties changed obviously with season, which is mainly related to temperature, and partly affected by sunlight, precipitation and relative humidity. The theanine content found in different seasons showed no regular changes among the four cultivars. However, total polyphenols in younger leaves of four cultivars did not change with season, except the var. Jinxuan which had a significant seasonal effect, i.e., late spring > late summer > late autumn > late winter. The largest proportion of non-ester catechins in younger leaves was epiphorocatechin (EGC), followed by epicatechin (EC), and both catechin (C) and gallocatechin (GC) were the smallest. The content of EGC in younger leaves of tea plants generally increased in late spring and decreased in late winter, whereas var. Jinxuan decreased in late summer. In general, there was a significant positive correlation between EGC content and climate factors, including precipitation, relative humidity and minimum temperature. On the other hand, the largest proportion of ester catechins in younger leaves was epigallocatechingallate (EGCG), followed by epicatechingallate (ECG), and gallocatechin gallate (GCG) was the smallest one. EGCG in younger leaves generally decreased in late winter and increased in late spring, whereas var. Jinxuan increased in late summer. The content of EGCG for both Jinxuan and Chin-Shin Oolong showed a significant positive correlation with precipitation and maximum temperature. In addition, EGCG had a positive correlation with sunlight, average temperature and maximum temperature for Hongyu, and with the minimum temperature for Hongyun. This study also explored the changes of the major composition content in four kinds of tea leaves during tea-making process, it was found that there was no changes in caffeine content in green tea, pouchong tea, oolong tea and black tea-making process. The total polyphenol content decreased by indoor withering, increased by roller fixation and rolling. Besides, total polyphenol content decreased during fermentation process of black tea. In this study, whether the different fermentation time changed the content of major components in leaves of the black tea was further explored. It was found that there was no significant changes in the content of caffeine and total polyphenol during the 6-hour fermentation process, whereas the contents of EGC, EC and GC, three kinds of non-ester form catechin, decreased significantly. The content of ECG, a kind of ester form catechin, also decreased significantly with fermentation time, though the content of EGCG decreased slightly but without significant difference. Also, the content of theaflavins, thearubigins and theabrownins significantly increased with fermentation time.
URI: http://hdl.handle.net/11455/95980
文章公開時間: 2020-07-06
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.