Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96004
標題: Reducing Methanol Content in Plum Wine by Concentration with Evaporator
利用蒸發濃縮降低紅肉李酒中甲醇含量
作者: Ya-Ning Hsieh
謝亞寧
關鍵字: 紅肉李酒
甲醇
果膠
蒸發濃縮
Plum wine
methanol
pectin
concentration with evaporator
引用: 王光輝。1998。清酒醪中酸度高的可能原因。製酒科技專論會編。第20期:58。 行政院農業委員會。2016a。農業生產統計-果品種植面積。 行政院農業委員會。2016b。農業統計會報-農產品收穫面積統計。 李大和、李國宏、李天道、李國林。2001。新型白酒生產與勾調技術問答。中國輕工業出版社,北京。108-127。 林昱成。2010。部分純化諾麗果膠酵素與諾麗果汁控溫發酵之研究。東海大學食品科學研究所。碩士論文。 林湰棋。1990。綠豆芽不同分子型態果膠酯酶之純化與其特性之研究。台灣大學食品科技研究所。碩士論文。 財政部國庫署。2016。菸酒管理法。(2016年12月27日修正發布)。 郭孫憲。2007。番石榴採收後生理活性變化及果膠甲基酯酶分離純化之探討。屏東科技大學食品科學系。碩士論文。 張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1996。食品化學。華香園出版。台北市。 康有德。1980。臺灣農家要覽。豐年出版社。台北。 陳正賢。2002。發酵李子酒製程之研究。輔仁大學食品營養學系研究所。碩士論文。 陳雅惠。2002a。龍鬚菜果膠酯酶所催化轉醯基反應之探討。屏東科技大學食品科學系。碩士論文。 陳震學。2002b。果膠酵素與硬心香蕉形成之探討。屏東科技大學食品科學系。碩士論文。 董玫伶。2013。臺灣紅肉李特色產品開發之研究。高雄餐旅大學餐飲創新研發。碩士論文。 歐錫坤、陳琦玲、宋家瑋。2002。臺灣李需冷量評估。中國園藝。48(3): 219-226。 歐靖詠。2013。漸層式冷凍濃縮最適條件之探討。國立中興大學食品暨應用生物科技學系。碩士論文。 黃評脩。2006。以再酯化CL-AIS分離商業果膠酵素之果膠解離酶降低黑后葡萄中甲醇含量之研究。國立屏東科技大學食品科學系所。碩士論文。 黃玟瑄。2010。紅肉李萃取物對於以H2O2誘發PC-12神經細胞氧化壓力之影響。臺北醫學大學保健營養學系。碩士論文。 楊秀美。1991。大豆芽果膠酯酶之性質研究。台灣大學食品科技研究所。碩士論文。 熊同銓。1994。臺灣經濟果樹栽培技術研討會專集。台灣省台中區農業改良場特刊。33:223-230。 賴滋漢、賴業超。1994。食品科技辭典。富林出版社。台中市。 賴嗚鳳。1989。葡萄醋開放式發酵之研究。國立中興大學食品科學研究所。碩士論文。 劉文婷。2009。不同酵素處理降低草莓酒甲醇含量之探討。國立屏東科技大學食品科學系所。碩士論文。 衛生福利部食品藥物管理署。2015。台灣地區食品營養成分資料庫。 Andraous J. I., Claus. M. J., Lindemann, D. J., & Berglund. K, A., (2004). Effect of liquefaction enzymes on methanol concentration of distilled fruit spirits. J. Enol.Vitic. 55:199-201. Boulton R. B., Singleton. V. L. , Bisson. L. F. & Kunkee. R. E. (1996). Principles and practices of winemaking. Springer-Verlag Media. New York. 4:102-192. Brady, C. J. (1976). The pectinesterase of the pulp of the banana fruit. Aust. J. Plant Physiol. 3:163-172. Castaldo, D., Quagliuolo, L., Servillo, L., Balestrieri, C. & Giovane, A, (1989). Isolation and charscterization of pectin methylesterase from apple fruit. J. Food Sci. 54:653-655. Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I. & Ciani, M. (2011). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 28:873-882. Delincée, H. & Radola, B. J. (1970). Some size and charge properties of tomato pectin methylesterase. Biophys. Acta. 214:178-189. Delincée, H. (1976). Thin-layer isoelectric focusing of multiple forms of tomato pectinesterase. Phytochem. 15:903-908. Deuel, H. & Stutz, E. (1958). Pectic substances and pectic enzymes. Adv Enzymol. 20:341. Du Toit, M., Engelbrecht, L., Lerm, E. & Krieger-Weber, S. (2011). Lactobacillus: The next generation of malolactic fermentation starter cultures-an overview. Food Bioproc. Tech. 4:876-906. Fischer, R. L. & Bennett, A. B. (1991). Role of cell wall hydrolyses in fruit ripening. Annu,Rev. Plant Physiol. Annu, Rev. Plant Physiol. Plant Mol.Biol. .42:675-703. Fogarty, W. M. & Ward, O. P. (1972). Enzyme production by bacteria isolated form water stored sitka spruce (Picea sitchensis). J.Appl.bact. 35:685-689. Giovane, A., Quagliuolo, L., Castaldo, D., Servillo, L. & Balestrieri, C. (1990). Pectin methylesterase from Actinidia chinensis fruits. Phytochem. 29:2821-2823. Goldberg, R., Pierron, M., Durand, L. & Mutaftschiev, S. (1992). In vitro and in situ properties of cell wall pectinmethylesterase from mung bean hypocotyls. J. Exp. Bot. 43:41-46. Guimarães, T. M., Moriel, D. G., Machado, I. P., Cyntia, M. T., Fadel Picheth. & Tania, M. B. Bonfim. (2006). Isolation and characterization of Saccharomyces cerevisiae strains of winery interest. Rev. Bras. Cienc. Farm. 42:119-126. Henick-Kling, T., Edinger, W., Daniel, P. & Monk, P. (1998). Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 84: 865-876. Hobon, G. E. (1965). The firmness of tomato fruit in relation to polygalacturonase activity. J.Hort.Sci. 40:66-72. Hultin, H. O., Sun, B. & Bulger, J. (1966). Pectin methyl esterases of the banana. Purification and properties. J. Food Sci. 31:320-327. Jolie, R. P., Duvetter, T., Van Loey, A. M. & Hendrickx. M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr. Res. 345:2583-2595. Keegstra, K., Talmadge, K. W., Bauer, W. D. & Albersheim, P. (1973). The structure of plant cell walls. III. A Model of the Walls of Suspension- cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components. Plant Physiol. 51:188. Keppler, F., Hamilton, J. T. G., Braß, M. & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature. 439:187-191. Kertesz, Z. I. (1951). The Pectic Substances. Interscience Publishers, Inc., New York. 628. Knoll, C., Fritsch, S., Schnell, S., Grossmann, M., du Toit, M. & Rauhut, D . (2011). Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT-Food Sci. Technol. 44:2077-2086. Kohn, R., Markovič, O. & Machová, E. (1983). Deesterification mode of pectin by pectinesterase of Aspergillus foetidus, tomatoes and alfalfa. Collect. Czech. Chem. Commun. 48:790-797. Komae, K., Sone, Y., Kakutu, M. & Misaki, A. (1990). Purification and characterization of pectinesterase from Ficus awkeotsang. Biol. Chem. 54:1469-1476. Kruse, J. A. (1992). Methanol poisoning. Intensive Care Med. 18:391-397. Lee, M. & MacMillan, J. D. (1968). Mode of action of pectin enzymes. I. Purification and certain properties of tomato pectinesterase. Biochem. 7:4025-4030. Lee, S. H., Lillehoj, H.S., Cho, S. M., Chun, H. K., Park, H. J., Lim, C. I. & Lillehoj, E. P. (2009). Immunostimulatory effects of oriental plum ( Prunus salicina Lindl.). Comp. Innunol. Microbiol. Infect. Dis. 32:407-417. Lin, T. P., Liu, C. C., Chen, S. W. & Wang, W. Y. (1989). Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino Achenes. Plant Physiol. 91:1445-1453. Lonvaud-Funel, A. (2010). Managing Wine Quality. A volume in Woodhead Publishing Series in Food Science. Technology and Nutrition. 3:60-92. Lourenco, E. J. & Catutani, A. T. (1984). Purification and properties of pectinesterase from papaya. J. Sci. Food Agric. 35:1120-1127. Macdonald, H. M., Evans, R. & Spencer, W. J.(1993). Purication and properties of the major pectinesterases in lemon fruits (Citrus limon). J. Sci. Food Agric. 62: 163-168. Markovič, O. & Slezárik, A. (1969). Isolation and partial characterization of pectin esterase from tomatoes. Collect. Czech. Chem. Commun. 34: 3820-3825. Markovič, O. (1978). Pectinesterase from carrot (Daucus carrota L.). Cell. Mol. Life Sci. 34:561-562. Markovič, O. & Jörnvall, H. (1986). Pectinesterase. The primary structure of the tomato enzyme. Eur. J. Biochem. 158:455-462. Mathewson, P. R. (1998). Enzymes: Practical guides for the food industry. In Enzymes. Eagan Press. New York. 29-32. Mohan, D., Chopra, A., Ray, R. & Sethi, H. (2001). Alcohol consumption patterns in India: a cross sectional study In: Demers, A., Room, R., Bourgault, C., editors. Surveys of Drnking Pattems and Problems in Seven Developing Countries, Geneva.World Health Organization . 103-114. Pérez-Jiménez, J., Neveu, V., Vos, F. & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 64 :S112-S120. Pressey, R. & Avants, J. K. (1972). Multiple forms of pectinesterase in tomatoes. Phytochem, 11: 3139-3142. Revilla, I. & González-SanJosé, M. L. (1998). Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chem. 63:307-312. Ridley, B., O'Neill, M. A. & Mohnen, D. (2001). Pectins : Structure biosynthesis and oligosaccharide-related signalling. Phytochem. 57:929-967. Rillo, L., Castaldo, D., Giovand, A., Servillo, L., Balestrieri, C. & Quagliuolo, L. (1992). Purification and properties of pectin methylesterase from mandarin orange fruit. J. Agric. Food Chem. 40:591-593. Seymour, T. A., Preston, J. F., Wicker, L., Lindsay, J. A. & Marshall, M. R. (1991). Purification and properties of pectinesterase of Marsh white grapefruit pulp. J. Agric. Food Chem. 39:1008-1085. Soufleros, E., Barrios, M. L. & Bertrand, A. (1998). Correlation between the content of biogenic amines and other wine compounds. Am. J. Enol. Vitic. 49:266-278. Srivastava, S. Modi, D. R., & Garg, S. K. (1997). Production of ethanol from guava pulp by yeast strains. Bioresour. Technol. 60:263-265. Theron, T., De Villiers, O. T. & Schmidt, A. A. (1977). Isolation and purification of pectin methylesterase from marvel tomatoes. Agrochemophysica. 9: 93-98. Van Buren, J. P. (1979). The chemistry of texture in fruits and vegtables. J Texture Studies. 10:1-23. Versteeg, C., Romboouts, F. M. & Pilnik, W. (1978). Purification and some characteristics of two pectinesterase isozymes from orange. Lebensm. Wiss. Technol. 11:267-274. Vilanova, M., Blanco, P., Cortés, S., Castro, M., Villa, T. G. & Sieiro, C. (2000). Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations. J. Appl. Microbiol. 89:876-883. Wong, D. W. S. (1995). Food Enzymes: Structure and Mechanism. Chapman & Hall. New York. 212-236. Wu, M. C., Jiang, C. M., Huang, P. H., Wu, M. Y. & Wang, Y. T. (2007). Separation and utilization of pectin lyase from commercial pectic enzyme via highly methoxylated cross-linked alcohol insoluble solid chromatography for wine methanol reduction. J Agric. Food Chem. 55:1557-1562.
摘要: 紅肉李是台灣盛產的李子品種之一,其果肉顏色鮮紅多汁極適合釀造水果酒。果實酒一般釀造方法是先將果實榨汁取得果汁,再進行酒精發酵。由於紅肉李富含果膠,容易有果實不易榨汁的情形,故常在榨汁處理中添加果膠分解酵素,增加榨汁率,不過,卻使果膠因果膠分解酵素將其甲氧基水解產生甲醇,導致酒液中有甲醇含量過高的問題發生。本研究嘗試利用蒸發濃縮方式,探討不同處理方式對降低其甲醇含量的成效,以及保存紅肉李豐厚酒體、特殊風味及色澤之最適性。小量紅肉李果汁製備(1公升)的結果顯示,經果膠酵素處理的果汁,其甲醇含量可達375 ppm,明顯高於未經處理者的未檢出。而經蒸發濃縮的果汁,在濃縮體積達90%、80%及70%後,其甲醇含量分別為142、115、77 ppm。中量製備果汁(10公升)在蒸發濃縮到85%的體積後,其甲醇含量為97 ppm。在小量發酵過程中,有添加果膠分解酵素組之酒醪其pH由3.08上升至3.36,而無添加果膠分解酵素組的pH則由3.10上升至3.38。發酵醪的可溶性固形物明顯地下降,而後隨著糖類消耗完畢,可溶性固形物明顯趨於平緩;無添加果膠分解酵素作用下,發酵醪可溶性固形物變化較慢。李子酒釀造主要是酒精發酵及蘋果酸-乳酸發酵,且後期因蘋果酸-乳酸發酵作用,導致pH偏高及酸度偏低。最後分別從小量測試逐步放大到生產規模,以了解各階段參數的差異,進而建構完整的釀酒系統。以生產規模進行85%濃縮果汁釀製而得的紅肉李酒(5.9%,w/v),其甲醇含量僅有162.5 ppm,以純乙醇計算則為2753.7 ppm,低於法定濃度4000 ppm。因此,以蒸發濃縮處理確實可以降低紅肉李酒中甲醇含量。
The plum is one of the plums grown in Taiwan, the juiciness and bright red color of its flesh make it very suitable for making fruit wine. The brewing process for most fruit wines involves first extraction of the juice from the fruit through pressing, followed by the fermentation process. As the red plum contains large quantities of pectin, it often becomes difficult to juicing. Usually, pectolytic enzymes are added in order to increase the juice extraction ratio. But as a result of the pectolytic enzymes breakdown of the pectin, methanol is produced, causing the problem of excessive methanol being present in the juice. Therefore, the aim of this research was to use the evaporation method to concentrate the pectolytic enzyme-treated juice and investigate different methods for decreasing the methanol content while preserving the plum's rich wine body, unique flavor, and vinosity. The results from a small sample of pectolytic enzyme-treated red plum juice (1 L) contained a methanol content up to 375 ppm, significantly higher than the untreated juice, which had no traces of methanol. Using the evaporation method, the concentration reached 90%, 80%, and 70%, with a methanol content of 142, 115, and 77 ppm respectively. The medium-size juice sample (10 L) at 85% concentration after evaporation had a methanol content of 97ppm. During the small-scale fermentation, the juice with pectolytic enzymes had a pH increase from 3.08 to 3.36, and the juice without pectolytic enzymes had a pH increase from 3.10 to 3.38. There was a decrease in the soluble solids of the fermented mash and after the completion of the sugar consumption, the total soluble solids were noticeably stabilized. Without the pectolytic enzymes, the change of the soluble solids slowed down in the fermented mash. The brewing of plum wine is mostly comprised of alcohol fermentation and malolactic fermentation. Malolactic fermentation results in a higher pH and lowered acidity. In conclusion, small-scale testing was gradually increased to production-scale in order to understand the different parameters of each stage and to set up a complete brewing system. 85% concentrated red plum wine (alcohol 5.9%, w/v) made according to production regulation contained a methanol content of 162.5 ppm, which is equivalent to 2753.7 ppm calculated with pure ethanol basis, lower than the legal maximum limit of 4000 ppm. Therefore, to Concentration with Evaporator can indeed reduce methanol content in plum wine.
URI: http://hdl.handle.net/11455/96004
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.