Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96006
標題: Production of glucosamine from biomass of fungi used for food fermentation
利用食品發酵用黴菌菌絲體生產葡萄糖胺
作者: Meng-Chi Lin
林孟琪
關鍵字: 葡萄糖胺
黴菌菌絲體
Aspergillus oryzae
液態培養
glucosamine
mycelial biomass
Aspergillus oryzae
liquid culture
引用: 方紹威。1990。幾丁質及幾丁聚糖在廢水處理,生化,食品和醫藥上 之研究發展現況。藥物食品檢驗局調查研究年報。8: 20-30。 吳赫川、林艷、馬瑩瑩、周健、張宿義、楊建剛。2016。秈米清酒釀 造研,釀酒科技。259, 31-36。 李文南。2008。蝴蝶蘭與朵麗蝶蘭耐寒性快速檢測與蘭共生菌接種源 之生產及保存。國立台灣大學生物資源暨農學院園藝所。碩士學 位論文。 林怡朱。2005。靈芝不同生長階段液態培養菌絲與子實體之水溶性多 醣特性。國立台灣大學園藝學研究所。碩士論文。 林淑君等。2006。幾丁聚糖在牙周組織工程的應用。中華牙周醫誌, 11: 87-96。 胡琦桂。1994。真菌球狀菌絲體生長探討。食品工業。26(9): 37-45。 陳幸臣、許嘉珍。1997。以微生物分解蝦殼製取幾丁質與其部份去乙 醯化。中國農業化學會誌。35(3): 342-353。 陳蔓甄。2014。利用豆渣為主要基質固態培養Aureobasidium pullulans NCH-218生產聚甘露醣酶與聚木醣酶條件及益生效果之探討。國 立中興大學食品暨應用生物科技學系。碩士學位論文。 麥揚竣。2007。Aspergillus oryzae NCH-42單寧酶之生產、純化及其特 性分析。國立中興大學食品暨應用生物科技學系。碩士學位論 文。 勝呂。1998。變形性關節症給予治療。New Food Industry。40: 11-15。 黃麗娜。1998。食藥用菇類的培養與應用。食品工業發展研究所。 p.144。 詹子瑢。2014。醬油耐鹽性酵母菌Zygosaccharomyces rouxii BCRC22499之工業化最適化培養基探討。國立中興大學食品暨應 用生物科技學系。碩士學位論文。 簡韶妤。2006。雞肉絲菇之培養及其呈味性質與生理活性評估。國立 中興大學食品暨應用生物科技學系。碩士學位論文。 闕文仁、鄧世正。1977。實用醬油釀造學。環宇出版社。 蘇遠志、黃世佑。1971。微生物化學工程學。天然書社。 魏玉嬌。2008。以紅麴菌生產葡萄糖胺之培養基組成最佳化研究。元 智大學化學工程與材料科學系。碩士學位論文。 Barnes, P. M., Bloom, B. 2008. Complementary and alternative medicine use among adults and children United States, 2007. National health statistics reports no 12. Hyattsville, MD, U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: 24 p. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review Microbiology 22: 87-108. Carter, S. B., Nokes, S. E., Crofcheck, C. L. 2004. The influence of environmental temperature and substrate initial moisture content on Aspergillus niger growth and phytase production in solid state cultivation. Trans American Society of Agricultural Engineering 47: 945-949. Chang, Y. F. Sitanggang, A. B., Wu, H. S. 2011. Optimizing Biotechnological Production of Glucosamine as Food Ingredient from Aspergillus sp. BCRC 31742, Journal of Food Technology, 9 (2): 75-82. Couto, S. R., Sanroman, M. A. 2006. Application of solid-state fermentation to food industry- A review. Journal of food engineering. 76: 291-302. Deng, M. D., Severson, D. K., Grund, A. D., Wassink, S. L., Burlingame, R. P., Berry, A., Running, J. A. 2005. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N- acetylglucosamine. Metab Eng. 7:201–214. Dev, A., Mohan, J. C., Sreeja, V., Tamura, H., Patzke, G. R., Hussain, F., Weyeneth, S., Nair, S. V., Jayakumar, R. 2010. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications Carbohydrate Polymers. 79: 1073-1079. Fang, Q.H, Tang, Y.J., Zong, J. J. 2002. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem. 37(12):1735-1739. Ferrer, J., Paez, G., Marmol, Z., Ramones, E., Garcia, H. and Forster, C. F. 1996. Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate. Bioresource Technology. 57: 55-60. Hansena, G. H., Lübeckb, M., Frisvada, J. C., Lübeckb, P. S., Andersena, B. 2015. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. A review. Process Biochemistry. 50: 1327–1341. Haq, I. U., Ali, S., Qadeer, M. A., Iqbal, J. 2003. Stimulatory effect of alcohols (methanol and ethanol) on citric acid productivity by a 2- deoxy-D-glucose resistant culture of Aspergillus niger GCB-47. Bioresource Technology. 86:227–233. Hata, Y., H. Ishida, E. Ichikawa, A. Kawato, K. Suginami & S. Imayasu. 1998. Nucleotide sequence of an alternative glucoamylase-encodting gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Gene 207: 127-134. Hölker, U., Lenz, J. 2005. Solid state fermentation: Are there any biotechnological advantages?. Current Opinion in Microbiology 8:301- 306. Hong, H., Y. K. Park. 2009. Differential down-regulation of COX-2 and MMP-13 in human skin fibroblasts by glucosamine-hydrochloride. Journal of Dermatological Science. 56(1): 43-50. Hsieh, J. W., Wu, H. S.,Wei, Y. H. 2007. Determination and kinetics of producing glucosamine using fungi. Biotechnology Progress. 23: 1009- 1016. Ilic, M. Z., Martinac, B. 2003. Effects of long-term exposure to glucosamine and mannosamine on aggrecan degradation in articular cartilage. Osteoarthritis Cartilage. 11(8): 613-622. Imanaka, H., Tanaka, S., Feng, B., Imamura, K., Nakanishi, K. 2010. Cultivation characteristics and gene expression profiles of Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. Journal of Bioscience and Bioengineering. 109: 267- 273. Jacobs, D. I., Maurien, M. A., Olsthoorn, Isabelle, M., Michiel, A., Stefaan, B., Serge, D., Rob, A. M. V. D. H., Cees A. M. J. J. V. D. H., Rolf, K., Thomas, L., Hildegard, M., Rogier, M., Marijke, M., Wally, H. M., Noël, N. M. E. V. P., Arthur, R, Sabrina, R., Marc, S., Roelofs, Johannes, A. R., Marcel, W. E. M. V. T., Arie, J. V., Herman, J. P, Hein, S., Cees, M. J. S. 2008. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genetic Biology. 46: 141-152. Jayakumar, R., Prabaharan, M., Nair, S. V., Tokura, S., Tamura, H., Selvamurugan, N. 2010. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science. 55: 675–709 Khor, E., L.Y. Lim. 2003. Implantable applications of chitin and chitosan. Biomaterial. 24:2339-2349. Kim, M. M., Mendis, E. 2007. Glucosamine sulfate promotes osteoblastic differentiation of MG-63 cells via anti-inflammatory effect. Bioorganic & Medicinal Chemistry Letters. 17(7): 1938-1942. Kuk, J. H., Jung, W. J., Jo, G. H., Kim, Y. C. 2005. Production of N- acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Applied Microbiology Cell Physiology. 68: 384-389. Kumura, H., Ishido, T., Shimazaki, K. 2011. Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source. Journal of Dairy Science. 94: 657-667. Liao, W., Liu, Y., Frear C. and Chen, S. 2008. Coproduction of fumaric acid and chitin from a nitrogenrich lignocellulosic material-dairy manure- using a pelletized filamentous fungus Rhizopus oryzae ATC 20344. Bioresource Technology 99: 5859-5866. Liu, X. F. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. Journal of applied polymer science. 79: 1324. Maria, P. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22:189-259. Michael, J. C.,Watkinson, S. C. 1997. Fungal cell and vegetative growth. In The Fungi, Academic Press: U. S. A. Mishra, A. and Kumar, S. 2007. Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation. Process Biochemistry 42: 681-685. Mojarrad, J. S., Nemati, M., Valizadeh, H., Ansarin, M., Bourbour, S. 2007. Preparation of Glucosamine from Exoskeleton of Shrimp and Predicting Production Yield by Response Surface Methodology. J. Agric. Food Chem. 55, 2246−2250. Moyer, A.J. 1953. Effect of methanol on the mycological production of citric acid in surface and submerged culture. Applied Microbiology. 1: 1-7. Narahara, H., Koyama, Y., Yoshida, T., Pichanigkura, S., Ueda, R., Taguchi, H. 1982. Growth and enzyme production in a solid-state culture of Aspergillus oryzae. J. Ferment. Technol. 60(4), 311-319. Ogawa, A., Yasuhara, A., Tanaka, T., Sakiyama, T. and Nakanishi, K. 1995. Production of neutral protease by membrane-surface liquid culture of Aspergillus oryzae IAM2704. Journal of Fermentation and Bioengineering. 80: 35-40. Pandey, A., Soccol, C. R., Mitchell, D. 2000. New developments in solid state fermentation: I-bioprocess and products. Process Biochemistry. 84 35:1153-1169. Pandey, A. 2003. Solid-state fermentation. Biochem. Engineer. 13: 81-84. Raghavarao, K. S., Ranganathan, V. T., Karanth, G. N. 2003. Biochemical Engineering Journal. 13: 127-135. Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology. 1(3): 1-9. Rao, S. B., Sharma, C. P. 1997. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research. 34: 21. Rattanakit, N., Yano, S., Wakayama, M., Plikomol, A., Tachiki, T. 2003. Saccharification of chitin using solid-state culture of Aspergillus sp. S1- 13 with shellfish waste as a substrate. Journal of Bioscience Bioengineering. 95: 391-396. Schaechter, M., Lederberg, J. 2004. The Desk Encyclopedia of Microbiology. Amsterdam: Elsevier Academic Press.1st ed, p. 333-334. Shenq leu. 1998. The prevention and cure deformability osteoarthritis, New Food Industry. 40: 11-15. Sitanggang, A. B., Wu, H. S. and Wang, S. S. 2009. Determination of fungal glucosamine using HPLC with 1-napthyl isothiocyanate derivatization and microwave heating. Biotechnology Bioprocess Engineering. 14(6): 819-827. Sitanggang, A. B., Sophia, L.,Wu, H. S. 2012. MiniReview Aspects of glucosamine production using microorganisms. International Food Research Journal. 19(2): 393-404. Sitanggang, A.B., Wu, H.S., Wang, S.S., Ho, Y.C. 2010. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour Technol. 101, 3595-3601. Sparringa, R. A. and Owens, J. D. 1999. Glucosamine content of tempe mould Rhizopus oligosporous. International Journal of Food Microbiology 47: 153-157. Suh, J. K., Matthew, H. W. 2000. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21(24): 2589-2598. Tan, S. C., Tan, T. K.,Wong, S. M., Khor, E. 1996. The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydrate Polymer. 30: 239-242. Vandenberghe L. P. S., Soccol, C. R., Pandey, A, Lebeault, J. M. 2000. Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technology. 74: 175-178. Vidal y Plana, R. R., Bizzarri, D., Rovati, A. L. 1978. Articular cartilage pharmacology: I. In vitro studies on glucosamine and non steroidal antiinflammatory drugs. Pharmacol Res Comm. 10: 557–569. Wang, S., Li, P., Su, J., Liang, R.,Wu, X. 2014. Enhanced glucosamine production with Actinomucor elegans based on stimulating factor of methanol. Indian J. Microbiol. 54(4):459–465. Yovita, S. P. R., T. Johannes, R. Arjen 2006. Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives. Biotechnol. Adv. 24:161-179. 86 Yu, K. W., Kim, Y. S., Shin, K. S., Kim, J. M. and Suh, H. J. 2005. Macrophage stimulating activity of exobiopolymer from cultured rice bran with Monascus pilosus. Applied Biochemical Biotechnology126: 35-48. Zhang, H., Wang, W. 2008. Preliminary study on chitosan/HAP bilayered scaffold. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 22(11): 1358-1363. Zhang, J., Liu, L., Li, J., Du, G., Chen, J. 2012. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissoloved oxygen level. Biores. Technol. 111: 507- 511.
摘要: 目前工業上生產葡萄糖胺之原料是以蝦蟹殼為主,以酸水解幾丁質來萃取葡萄糖胺,然而蝦蟹殼有來源不穩定,且不適合對海鮮類食物過敏的人與素食族群來食用之缺點。本研究擬以黴菌菌絲取代蝦蟹殼作為萃取葡萄糖胺之原料,選取食品發酵用安全菌株,如米麴菌、根黴菌及毛黴菌等為試驗菌株,從中挑選出生產葡萄糖胺之最適黴菌試驗菌株,評估以液態搖瓶培養時培養基組成、培養條件,對菌絲產量、葡萄糖胺產量、葡萄糖胺含量及葡萄糖胺產率之影響。結果顯示,以Aspergillus oryzae NCH-42為最適試驗菌株,接種10%孢子液(107~108 spores/mL)於50 mL最適培養基(額外添加20 g/L 葡萄糖、30 g/L酵母萃取物之PDB),調整初始pH 2.5且在30˚C、200 rpm條件下培養4天,可得到最佳菌絲產量為24.80±0.91 g/L。收集菌絲並於烘箱乾燥,再經6 N HCl於100°C下酸水解4小時,可得葡萄糖胺產量為7.20±0.08 g/L,葡萄糖胺含量為0.290±0.003 g/g biomass以及葡萄糖胺產率為74.98±2.21 mg/(L·h)。另外,較適水解條件之結果顯示,以8 N HCl水解菌絲3個小時內的效果最適宜,其葡萄糖胺含量可達0.42±0.02 g/g biomass。另外,若以8 N HCl水解菌絲則只需1個小時即可有較佳之葡萄糖胺含量,為0.38±0.01 g/g biomass。
URI: http://hdl.handle.net/11455/96006
文章公開時間: 2018-08-22
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.