Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96016
標題: Develop an immunomagnetic bead based lateral flow assay for the rapid detection of a major peanut allergen – Ara h 2
建立一種免疫磁珠側流層析檢測方法以快速偵測花生主要過敏原Ara h 2
作者: Yang-Fan Fung
馮楊帆
關鍵字: 花生過敏原
Ara h 2
磁珠
測流免疫層析
peanut allergen
Ara h 2
magnetic beads
lateral flow assay
引用: 1. Lewis SA, Grimshaw KEC, Warner JO & Hourihane O'b. (2005). The promiscuity of immunoglobulin E binding to peanut allergens, as determined by Western blotting, correlates with the severity of clinical symptoms. Clinical and experimental allergy, 35:767-773. 2. Sicherer SH, Munoz-Furlong A, Sampson HA. (2003). Prevalence of peanut and tree nut allergy in the United States determined by means of random digit dial telephone survey: a 5-year follow-up study. Journal of Allergy and Clinical Immunology, 112:1203-1207. 3. Grundy J, Matthews S, Bateman B, Dean T, Arshad SH. (2002). Rising prevalence of allergy to peanut in children: data from 2 sequential cohorts. Journal of Allergy and Clinical Immunology, 110:784-9. 4. Kanny G, Moneret-Vautrin DA, Flabbee J, Beaudouin E, Morisset M & Thevenin F. (2001). Population study of food allergy in France. Journal of Allergy and Clinical Immunology, 108:133-140. 5. Park M, Kim D, Ahn K, Kim J, Han Y. Prevalence of immediate-type food allergy in early childhood in Seoul. (2014). Allergy Asthma Immunol Res, 6:131-6. 6. Clarke MCA, Kilburn SA, Hourihane JO, Dean KR, Warner JO, Dean TP. (1998). Serological characteristics of peanut allergy. Clinical & Experimental Allergy, 28:1251–1257. 7. Sáiz J, Montealegre C, Marina ML & García-Ruiz C. (2013). Peanut Allergens: An Overview. Craitical Reviews in Food Science and Nutrition, 53:722-737. 8. Becker WM, Jappe U. (2014). Peanut Allergens. Chemical immunology and allergy, 100:256-267. 9. Scott HS, MD, Hugh A, Sampson MD. (2010). Food Allergy. Journal of Allergy and Clinical Immunology, 125:S116-S125. 10. Al-Muhsen S, Clarke AE, Kagan RS. (2003). Peanut allergy: an overview. Canadian Medical Association Journal, 168:1279-1285. 11. Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA. (1995). Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. Journal of Clinical Investigation, 96:1715-1721. 12. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM. (1999). Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol, 119:265-274. 13. Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, Burks AW, Bannon GA. (1999). Molecular cloning and epitope analysis of the peanut allergen Ara h 3. Journal of Clinical Investigation, 103:535-542. 14. Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wensing M, Becker WM, Koppelman SJ, Knulst AC, Helbling A, Hefle SL, Van Ree R, Vieths S. (2004). Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. Journal of Allergy and Clinical Immunology, 114:1410-1417.  15. Petersen A, Kull S, Rennert S, Becker WM, Krause S, Ernst M, Gutsmann T, Bauer J, Lindner B, Jappe U. (2015). Peanut defensins: Novel allergens isolated from lipophilic peanut extract. Journal of Allergy and Clinical Immunology, 136:1295-1301. 16. Schwager C, Kull S, Krause S, Schocker F, Petersen A, Becker WM, Jappe U. (2015). Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One, 4. 17. Chassaigne H, Norgaard JV, van Hengel AJ. (2007b). Proteomicsbased approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). Journal of Agricultural and Food Chemistry, 55:4461–4473. 18. Bublin M, Breiteneder H. (2014). Cross-Reactivity of Peanut Allergens. Current Allergy and Asthma Reports, 1T1T1T1T14:722-737. 19. Schwager C, Kull S, Krause S, Schocker F, Petersen A, Becker WM, Jappe U. (2015). Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One, 10. 20. Davis PJ, Williams SC. (1998). Protein modification by thermal processing. Allergy, 53:102-5. 21. Maleki SJ, Chung SY, Champagne ET, Raufman JP. (2000). The effects of roasting on the allergenic properties of peanut proteins. Journal of Allergy and Clinical Immunology, 106:763-768. 22. Davis PJ, Smales CM, James DC. (2001). How can thermal processing modify the antigenicity of proteins? Allergy, 56:56–60. 23. Moghaddam AE, Hillson WR, Noti M, Gartlan KH, Johnson S, Thomas B, Artis D. (2005). Influence of thermal processing on the allergenicity of peanut proteins. Journal of Agricultural and Food Chemistry, 53(11):4547–4553. 24. Wenju Zhang, Qingqing Zhu, Tong Zhang, Qin Cai, Qin Chen. (2016). Thermal processing effects on peanut allergen Ara h 2 allergenicity in mice and its antigenic epitope structure. Food Chemistry, 212: 657–662. 25. Ewan PW, Clark AT. (2001). Long-term prospective observational study of patients with peanut and nut allergy after articipation in a management plan. Lancet, 357:111-115. 26. de Leon MP, Drew AC, Glaspole IN, Suphioglu C, O'Hehir RE, Rolland JM. (2007). IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Molecular Immunology, 44:463–471. 27. Koppelman SJ, Hefle SL, Taylor SL, de Jong GAH. (2010). Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: A comparative in vitro study and partial characterization of digestion-resistant peptides. Molecular Nutrition & Food Research, 54:1711–1721. 28. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF. (2004). Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil–histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clinical & Experimental Allergy, 34:583–590. 29. G William Palmer, Donald AD, A Wesley Burks, Gary A. Bannon S. Allan Bock, Harry S. Porterfield, Robert A. McDermott, Stephen C. Dreskin. (2005). Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clinical Immunology, 115:302-312. 30. Sellers CL, Teuber, SS, Buchanan BB, Chen L. (2000). Peanut Protein Digestibility: A Gastric and Intestinal Model. Journal of Allergy and Clinical Immunology, 105:S140. 31. Schocker F, Luttkopf D, Muller U, Thomas P, Vieths S, Becker WM. (2000). IgE binding to unique hazelnut allergens: identification of non pollen-related and heat-stable hazelnut allergens eliciting severe allergic reactions. European Journal of Nutrition, 39:172-180. 32. Mondoulet L, Paty E, Drumare MF, AH-leung S, Scheinmann P, Willemot RM, Wal JM, Bernard H. (2005). Journal of Agricultural and Food Chemistry, 53:4547-4553. 33. Stanley JS, King, N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM. (1997). Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Archives of Biochemistry and Biophysics, 342:244–253. 34. Sicherer SH, Muňoz-Furlong A, Sampson HA. (2003). Allergy Clin Immunol, 112:1203–1207. 35. Rita CA, Filipa BP, Henri PAN, Raquel CBM, María Begoña González-García, M Beatriz PPO, Cristina DM. (2015). Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 64:19-24. 36. Vicotr RV M, Alessandro P, Susana C, Rebeca MTR, Angel JR, Maria SC, Jose MP. (2016). Electrochemical detection of peanuts at trace levels in food using a magnetoimmunosensor for the allergenic protein Ara h 2. Sensors and Actuators B: Chemical, 236:825-833. 37. Thomas H, Kornelia K, Annabella J, Martin R. (2014). Matrix-normalised quantification of species by threshold-calibrated competitive real-time PCR Allergenic peanut in food as one example. Food Chemistry, 163:68–76. 38. H Hird J, Lloyd R, Goodier J Brown P, Reece. (2003). Detection of peanut using real-time polymerase chain reaction. Eur Food Res Technol, 217:265–268. 39. Oliver S, Stefan V. (2004). Development of a Real-Time PCR and a Sandwich ELISA for Detection of Potentially Allergenic Trace Amounts of Peanut (Arachis hypogaea) in Processed Foods. Food Chemistry, 52:3754-3760. 40. Lopez CI, Cruz SD, Pegels N, Gonzalez I, Garcia T, Martin R. (2013). Development of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis hypypogaea) in processed foods. Food Control, 30:480-490. 41. Zhang WJ, Cai Q, Guan X, Chen Q. (2015). Detection of peanut allergen (Arachis hypogaea) by Real-time PCR method with internal amplification control. Food Chemistry, 174:547-552. 42. Scaravelli E, Brohee M, Marchelli R, Hengel AV. (2008). Development of three real-time PCR assays to detect peanut allergen residue in processed food products. European Food Research and Techonology, 277:857-869. 43. Immer U, Lacorn M. (2015). Enzyme-linked immunosorbent assays (ELISAs) for detecting allergens in food. Handbook of Food Allergen Detection and Control. A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition, 199-217. 44. Arjon J, van Hengel. (2007). Food allergen detection methods and the challenge to protect food-allergic consumers. Anal Bioanal Chem, 389:111-118. 45. Liu N, Nie D, Zhao Z, Meng X, Wu A. (2015). Ultrasensitive immunoassays based on biotin-streptavidin amplified system for quantitative determination of family zearalenones. Food Control, 57:202-209. 46. Jayasena S, Smits M, Fiechter D, Jong A, NOrdlee J, Baumert J, Taylor ST, Pieters RH, Koppelman SJ. (2015). Comparison of six commercial ELISA kits for their specificity and sensitivity in detecting different major peanut allergens. Journal of Agricultural and Food Chemistry, 63:1849-1855. 47. Montserrat M, Sanz D, Juan T, Herrero A, Sanchez L, Calvo M, Perez MD. (2015). Detection of peanut (Arachis hypogaea) allergens in processed foods by immunoassay: Influence of selected target protein and ELISA format applied. Food Control, 54:300-307 48. Ji KM, chen JJ, Gao C, Liu X, Xia L, Liu ZG, Li L, Yang S. (2011). A two-site monoclonal antibody immunochromatography assay for rapid detection of peanut allergen Ara h 1 in Chinese imported and exported foods. Food Chemistry, 12+:541-545. 49. Liu G, Han Z, Nie D, Yang J, Zhao Z, Zhang J, Li H, Liao Y, Song S, De Saeger S, Wu A. (2012). Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow assay. Food Control, 27:200-205. 50. Careri M, Elviri L, Lagos JB, Mangia A, Speroni F, Terenghi M. (2008). Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h 3/4 peanut protein in foods. Jouranl of Chromatograhpy A, 1206:89-94. 51. Yunginger JW, Gauerke MB, Jones RT, Dahlberg MJE, Ackerman SJ. (1983). Use of radio immunoassay to determine the nature, quantity and source of allergic contamination of sunflower butter. Journal of Food Protection, 46:625-628. 52. Keating MU, Jones RT, Worley NJ, Shively CA, Yunginger JW. (1990). Immunoassay of peanut allergens in food-processing materials and finished foods. Journal of Allergy and clinical Immunology, 86:41-44. 53. Malmheden Y, Eriksson A, Everitt G, Yman L, Karlsson T. (1994). Analysis of food Proteins for verification of contamination or mislabeling. Food and Agricultural Immunology, 6:167-172. 54. Holzhauser T, Dehne LI, Hoffmann A, Haustein D, Vieths S. (1998). Rocket immunoelectrophoresis (RIE) for determination of potentially allergenic peanut proteins in processed foods as a simple means for quality assurance and food safety. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206: 1-8. 55. Wang Y, Deng R, Zhang G, Li , Yang J, Sun Y, Li Z, Hu X. (2015). Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. Journal of Agricultural and Food Chemistry, 63:2172-2178. 56. Stephan O, Moller N, Lehmann S, Holzhauser T, Vieths S. (2002). Development and validation of two dipstick type immunoassays for determination of trace amounts of peanut and hazelnut in processed foods. European Food Research, 215:431-436. 57. Schappi GF, Konrad V, Imhof D, Etter R, Wuthrich B. (2001). Hidden peanut allergens detected in various foods: findings and legal measures. Allergy, 56:1216-1220. 58. Blais BW, Gaudreault M, Phillippe LM. (2003). Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control, 14:43-47. 59. Juan P, Shanshan S, Liqiang L, Hua K, Chuanlai X. (2015). Development of Sandwich ELISA and Immunochromatographic Strip for the Detection of Peanut Allergen Ara h 2. Food Anal. Methods, 8:2605–2611. 60. Patricia SU, Judith R, Parisa A, Brigitte G, Manuela F, Alexandra M, Sabine B. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395:69–81. 61. Wei B, Li F, Yang H, Yu L, Zhao K, Zhou R, Hu Y. (2012). Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of actinobacillus pleuropneumoniae. Biosensors and Bioelectronics, 35:390-393. 62. Fabienne G, Béatrice B, Julien Q, Annie C, Catherine D. (2016). Rapid detection and quantification of the marine toxic algae, Alexandrium minutum, using a super-paramagnetic immunochromatographic strip test. Talanta, 147:7T7T7T581-589. 63. Yingying Liu, Zhaohuan Zhang, YilongWang, Yong Zhao, Ying Lua, Xiaowei Xu, Jun Yan, Yingjie Pan. (2015). A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. International Journal of Food Microbiology, 221:7T7T7T109-116. 64. Wenting L, Kan W, Kun X, Weijian Q, Yafei H, Hao X, Xinyu Y, Yanrong C, Daxiang C, Jinghua H. (2017). Dual Immunomagnetic Nanobeads-Based Lateral Flow Test Strip for Simultaneous Quantitative Detection of Carcinoembryonic Antigen and Neuron Specific Enolase. Nature, 2T2T2T2T7:42414. 65. Linda DS, Nuria T, Paul M, Jose MA, Ruramayi N, Neil R, Richard J. Delahay, Roland Ashford, W Ian Montgomery, Irene R Grant. (2017). Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. MC Veterinary Research, 13:131. 66. Zheng C, Wang, XC, Lu Y, Liu Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2):446-452. 67. Zhao Y, Chen X, Lin S. (3T3T3T3T20173T3T3T3T). Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins. Analytica Chimica Acta, 964:1-6. 68. Yanrong C, Kan W, Zongrui L, Rongjin S, Daxiang C, Jinghua H. (2016). Rapid detection and quantification of tumor marker carbohydrate antigen 72-4 (CA72-4) using a superparamagnetic immunochromatographic strip. Analytical and Bioanalytical Chemistry, 408:2319-2327. 69. Xue H, Zhang BY, He BY. (2016). Rapid Immunochromatographic Assay for Escherichia coli O157:H7 in Bovine Milk Using IgY Labeled by Fe3O4/Au Composite Nanoparticles. Food Science and Technology Research, 22(1):53-58. 70. Moon S, Randall K, Laurent P, Edathara CA, A Burks, Gary AB. (2002). Protein Structure Plays a Critial Role in Peanut Allergen Stability and May Determine Immunodominant IgE-Binding Epitopes. The Journal of Immunology, 169:882-887 71. Laemmli UK. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227:680-685. 72. Clara E, Alfonsina D'A, María Luisa Marina, María Concepcion García, Pier Giorgio Righetti. (2013). Analytical Approaches for the Characterization and Identification of Olive (Olea europaea) Oil Proteins. American Chemical Society, 61:10384−10391. 73. Carmen MH, Sylvie B, Ladislav O. (2008). Determination of Proteins in Refined and Nonrefined Oils. Journal of Agricultural and food chemistry, 56:4348-4351. 74. Olszewski A, Pons L, Moutete F, Aimone-Gastin I, Kanny G, Moneret-Vautrin DA, Gueant JL. (1998). Isolation and characterization of proteic allergens in refined peanut oil. Clinical & Experimental Allergy, 28:850-859. 75. Crevel RWR, Kerkhoff MAT, Koning MMG. (2000). Allergenicity of refined vegetable oils. Food and Chemical Toxicology, 38:358-393. 76. Jonathan O'B, Huorihane MD, Sally A, Kiburn PhD, Julie A, Nordlee MS, Susan L, Hefle PhD, Steve L, Taylor PhD, John O, Warner MD. An evaluation of the sensitivity of subjects with peanut allergy to very low doses of peanut protein: A randomized, double-blind, placebo-controlled food challenge study. Journal of Allergy and Clinical Immunology, 100: 596-600. 77. Moshe BS MD, Daniel WH MA, Lianne Soller BSc, Joseph FBSc, Lawrence J, Yvan SP MA, Samuel BG PhD, Susan JE, Ann EC MD MSc. A population-based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. American Academy of Allergy, Asthma & Immunology, 125: 1327-1335. 78. Chen J, Hu Y, Allen KJ, Ho MHK, Li HQ. The prevalence of food allergy in infants in Chongqing, China. Pediatric allergy and immunology, 22: 356-360. 79. Ho MHK, Lee SL, Wong WHS, Patrick IP, Lau YL. Prevalence of seilf-reported food allergy in Hong Kong children and teens -a populatnon survey. Asian pacific journal of allergy and immunology, 30: 275-284. 80. Lynette PCS, Elizabeth ACM, Shu ES, Irvin Gerez, Pau Zhing Ng, Fong Cheng Yi, Stefan Ma, Bee Wah Lee. A population-based questionnaire survey on the prevalence of peanut, tree nut, and shellfish allergy in 2 Asian populations. Journal of Allergy and Clinical Immunology, 126: 324-331. 81. S Allan Bock, Anne MF, Hugh AS. Fatalities due to anaphylactic reactions to foods. Journal of Allergy and Clinical Immunology, 107: 191-193. 82. Wu TC, Tsai TC, Huang CF. (2012). Prevalence of food allergy in Taiwan: a questionnaire-based survey. Internal medicine journal, 42: 1310-1315. 83. Burks AW, Williams LW, Helm RM, Connaughton C, Cockrell G, Obrien T. (1991). Identification of a major peanut allergen, Ara-h-I, inpatients with atopic-dermatitis and positive peanut challenges. Journal of Allergy and Clinical Immunology, 88:172–179. 84. Burks AW, Sampson HA, Bannon G. (1998). Peanut allergens. Allergy, 53:725–730. 85. Burks AW, Shin D, Cockrell G, Stanley JS, Helm, RM, Bannon GA. (1997). Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. European Journal of Biochemistry, 245:334–339. 86. Barre A, Borges JP, Rouge P. (2005). Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: A structural basis for their IgE-binding cross-reactivity. Biochimie, 87:499–506. 87. Becker WM, Kleber-Janke T, Lepp U. (2002). Peanut allergy: Are clinical symptoms associated with IgE-reactivity to certain (recombinant) peanut allergens? In: New Trends in Allergy V, pp. 159–165. 88. Kang IH, Gallo M. (2007). Cloning and characterization of a novel peanut allergen Ara h 3 isoform displaying potentially decreased allergenicity. Plant Science, 172:345–353. 89. Blanc F, Adel-Patient K, Drumare MF, Paty E, Wal JM, Bernard H. (2009). Capacity of purified peanut allergens to induce degranulation in a functional in vitro assay: Ara h 2 and Ara h 6 are the most efficient elicitors. Clinical & Experimental Allergy, 39:1277-1285. 90. Burks AW, Williams LW, Connaughton C, Cockrell G, Obrien TJ, Helm RM. (1992). Identification and characterization of a 2nd major peanut allergen, Ara h II, with use of the sera of patients with atopic-dermatitis and positive peanut challenge. Journal of Allergy and Clinical Immunology, 90:962-969. 91. Chatel JM, Bernard H, Orson FM. (2003). Isolation and characterization of two complete Ara h 2 isoforms cDNA. International Archives of Allergy and Immunology, 131:14-18. 92. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM. (1999). Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. International Archives of Allergy and Immunology, 119:265-274. 93. Schmidt H, Gelhaus C, Latendorf T, Nebendahl M, Petersen A, Krause S, Leippe M, Becker WM, Janssen O. (2009). 2-D DIGE analysis of the proteome of extracts from peanut variants reveals striking differences in major allergen contents. Proteomics 9:3507–3521. 94. Kleber-Janke T, Crameri R, Scheurer S, Vieths S, Becker WM. (2001). Patient-tailored cloning of allergens by phage display: Peanut (Arachis hypogaea) profilin, a food allergen derived from a rare mRNA. Journal of Chromatography, 756:295–305. 95. Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wenising M, Becker WM, Koppelman SJ, Knulst AC, Helbling A, Hefle SL,van Ree R, Vieths S. (2004). Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. Journal of Allergy and Clinical Immunology, 114:1410–1417. 96. Moverare R, van Odijk J, Sjolander S, Poorafshar M, Ahlstedt S, Borres M, Bengtsson U. (2009). Evaluation of specific IgE antibodies to Ara h 1, Ara h 2, Ara h 3 and Ara h 8 as risk markers for severe allergic reactions to peanut. Allergy 64:942. 97. Riecken S, Lindner B, Petersen A, Jappe U, Becker WM. (2008). Purification and characterization of natural Ara h 8, the Bet v 1 homologous allergen from peanut, provides a novel isoform. The Journal of Biological Chemistry, 389:415–423. 98. Krause S, Reese G, Randow S, Zennaro D, Quaratino D, Palazzo P, Ciardiello MA, Petersen A, Becker W, Mari A. (2009). Lipid transfer protein (Ara h 9) as a newpeanut allergen relevant for a Mediterranean allergic population. Journal of Allergy and Clinical Immunology, 124:771–778. 99. Lauer I, Dueringer N, Pokoj S, Rehm S, Zoccatelli G, Reese G, Miguel-Moncin MS, Cistero-Bahima A, Enrique E, Lidholm J, Vieths S, Scheurer S. (2009). The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut. Clinical & Experimental Allergy, 39:1427–1437. 100. Pons L, Chery C, Mrabet N , Schohn H, Lapicque F, Gueant JL. (2005). Purification and cloning of two high molecular mass isoforms of peanut seed oleosin encoded by cDNAs of equal sizes. Plant Physiology and Biochemistry, 43:659–668. 101. Pons L, Chery C, Romano A, Namour F, Artesani MC, Gueant JL. (2002). The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy 57:88–93. 102. Finkina EI, Shramova EI, Tagaev AA, Ovchinnikova TV. (2008). A novel defensin from the lentil Lens culinaris seeds. Biochemical and Biophysical Research Communications, 371:860-865. 103. Francesca Speroni, Lisa Elviri, Maria Careri, Alessandro. (2010). MangiaMagnetic particles functionalized with PAMAM-dendrimers and antibodies: a new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Analytical and Bioanalytical Chemistry, 397:3035–3042. 104. V Ruiz-Valdepeñas Montiel, S Campuzano, A Pellicanò, RM Torrente-Rodríguez, AJ Reviejo, MS Cosio, JM Pingarrón. (2015). Sensitive and selective magnetoimmunosensing platform for determination of the food allergen Ara h 1. Analytica Chimica Acta, 880:52–59. 105. Steven MG. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63:279–285. 106. Katrina JA, Paul JT, Ruby P, Stephen T, Scott S, Gideon L, Nelson R, Motohiro E, Gary W, EN Clare Mills, Kirsten B, Alessandro F, aHugh AS. (2014). Precautionary labelling of foods for allergen ontent: are we ready for a global framework? World Allergy Organization Journal, 7:10. 107. Cristina DC, Cosima DC, Carlo GZ. (2014). Determination of Proteins in Refined and Nonrefined Oils. Journal of Agricultural and Food Chemistry, 62:9401−9409. 108. Rigby NM, Sancho AI, Salt LJ, Foxall R, Taylor S, Raczynski A, Cochrane SA, Crevel RW, Mills EN. (2011). Quantification and partial characterization of the residual protein in fully and partially refined commercial soybean oils. Journal of Agricultural and Food Chemistry, 59:1752−1759.
摘要: 花生被廣泛的用於各種食品和食品加工,包括各類點心、餅乾、飲料、糖果等。然而花生含有會引發嚴重過敏反應的過敏原,嚴重者會造成過敏性休克。因此,建立一個快速檢測花生過敏原的檢測法是非常必要的。Ara h 2是花生一個主要的過敏原,相比比起Ara h,它十分穩定並且在食品加工過程中不容易被降解,所以本研究針對Ara h 2建立了一個磁珠側流免疫層析快篩檢測法。首先,本研究對兩株勝肽抗體和一株Anti-Ara h 2多住抗體進行配對,一個抗體用於修飾磁珠,另一個則作為檢量線塗佈的抗體;然後,對磁珠和免疫試紙片進行條件優化,確認條件為: NC膜型號AE99、檢量線抗體密度7.5 μg/cm、磁珠大小100 nm、修飾磁珠的抗體濃度400 μg/ml、NC膜Blocker為glycine、磁珠Blocker為Milk、磁珠樣品反應比例20:300、反應時間30分鐘;此外,本研究還對此法的存儲性和精準度進行了測試。本研究成功建立了該磁珠側流免疫層析檢測法的模型,它的檢測極限為0.5 μg/ml,標準曲線方程y = -0.1207x2 + 7.7389x + 2.0215,R² = 0.9997。最後,本法用於添加十種市售油品的檢測。
Peanut has been widely used in various kinds of food products, including snacks, biscuits, drinks and candies. However, peanut also induces severe allergic reactions, such as anaphylaxis shock. Thus, it is necessary to develop a rapid method for detecting peanut residues. Ara h2 is a major peanut allergen and its stability gets less impacted by food processing than another major peanut allergen- Ara h1. Therefore, in this study, we developed a magnetic bead labeled lateral flow assay to detect a major peanut allergen- Ara h2. Firstly, two anti-peptide antibodies and one anti-Ara h2 polyclonal antibody were used to determine an optimal pair of antibody: one antibody tagged on the surface of magnetic bead and the other immobilized on the test line of a lateral flow strip. Then, magnetic beads and NC membranes were optimizated. Following is the final condition, NC membrane type is AE99, testline antibody density is 7.5 μg/cmm magnetic beads size is 100 nm, modified antibody concentration is 400 μg/ml, NC membrane blocker is glycine, magnetic beads blocker is milk, ratio of magnetic beads and sample is 20:300, reaction time is 30 min. Furthermore, storability and inter/intra assay were tested. Therefore, a rapid magnetic bead labeled lateral flow assay was developed. LOD is 0.5 μg/ml. y = -0.1207x2 + 7.7389x + 2.0215, R² = 0.9997. Finally, this developed assay was used to detect Ara h 2 in oil product samples.
URI: http://hdl.handle.net/11455/96016
文章公開時間: 2020-08-22
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.