Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96022
標題: Effects of the supernatant from Lactobacillus acidophilus and Lactobacillus plantarum fermented with curcium on upregulating the neprilysin and degrading the Beta-amyloid
探討嗜酸乳桿菌和植物乳桿菌發酵之薑黃上清液提升腦啡肽酶活性和降解阿茲海默症類蛋白能力
作者: Yu-Ting Li
李侑庭
關鍵字: 嗜酸乳桿菌
植物乳桿菌
阿茲海默症
類澱粉樣胜肽
神經纖維纏結
薑黃
Lactobacillus acidophilus
Lactobacillus plantarum
Neprilysin
Alzheimer's disease
β-amyloid
Neurofibrillary tangles
curcium
引用: 廖啟成,1998。乳酸菌的分類與應用。食品工業,30:1-10。 Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research, 23(1/A), 363-398. Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., . . . Smith, S. O. (2010). Structural conversion of neurotoxic amyloid-[beta] 1-42 oligomers to fibrils. Nature structural & molecular biology, 17(5), 561-567. Alm, L. (1982). Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of fermented milk products for lactose intolerant individuals. Journal of dairy science, 65(3), 346-352. Ammon, H. P., & Wahl, M. A. (1991). Pharmacology of Curcuma longa. Planta medica, 57(01), 1-7. Arendt, T., Schindler, C., Brückner, M. K., Eschrich, K., Bigl, V., Zedlick, D., & Marcova, L. (1997). Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein ε4 allele. Journal of Neuroscience, 17(2), 516-529. Arunachalam, K. D. (1999). Role of bifidobacteria in nutrition, medicine and technology. Nutrition research, 19(10), 1559-1597. Aso, Y., & Akazan, H. (1992). Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urologia internationalis, 49(3), 125-129. Avila, J., Lucas, J. J., Perez, M., & Hernandez, F. (2004). Role of tau protein in both physiological and pathological conditions. Physiological reviews, 84(2), 361-384. Ballatore, C., Lee, V. M.-Y., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience, 8(9), 663-672. Bengmark, S. (2000). Colonic food: pre-and probiotics. The American journal of gastroenterology, 95(1), S5-S7. Bhaumik, S., Jyothi, M. D., & Khar, A. (2000). Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS letters, 483(1), 78-82. Bosch, M., Fuentes, M. C., Audivert, S., Bonachera, M. A., Peiró, S., & Cuñé, J. (2014). Lactobacillus plantarum CECT 7527, 7528 and 7529: probiotic candidates to reduce cholesterol levels. Journal of the Science of Food and Agriculture, 94(4), 803-809. Buchman, A. S., & Bennett, D. A. (2011). Loss of motor function in preclinical Alzheimer's disease. Expert review of neurotherapeutics, 11(5), 665-676. Caccamo, A., Oddo, S., Sugarman, M. C., Akbari, Y., & LaFerla, F. M. (2005). Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiology of aging, 26(5), 645-654. Capozzi, V., Russo, P., Dueñas, M. T., López, P., & Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Applied microbiology and biotechnology, 96(6), 1383-1394. Carrillo-Mora, P., Luna, R., & Colín-Barenque, L. (2014). Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxidative medicine and cellular longevity, 2014. Casserly, I., & Topol, E. J. (2004). Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. The Lancet, 363(9415), 1139-1146. Chang, S.-L., Chiang, Y.-M., Chang, C. L.-T., Yeh, H.-H., Shyur, L.-F., Kuo, Y.-H., . . . Yang, W.-C. (2007). Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. Journal of Ethnopharmacology, 112(2), 232-236. Chen, H., & Hu, C. (2006). Genetic characteristics of dementia in Taiwan. Acta Neurologica Taiwanica, 15(3), 161. Chen, P.-T., Hou, W.-C., Yu, L.-C., & Chen, R. P.-Y. (2016). Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease. Scientific reports, 6, 29760. Cogan, T. M., Barbosa, M., Beuvier, E., BIANCHI-SALVADORI, B., COCCONCELLI, P. S., FERNANDES, I., . . . LEDDA, A. (1997). Characterization of the lactic acid bacteria in artisanal dairy products. Journal of Dairy Research, 64(03), 409-421. Commane, D., Hughes, R., Shortt, C., & Rowland, I. (2005). The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 591(1), 276-289. Conney, A. H., Lysz, T., Ferraro, T., Abidi, T. F., Manchand, P. S., Laskin, J. D., & Huang, M.-T. (1991). Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Advances in enzyme regulation, 31, 385-396. Cousin, M. A. (2006). Review of Modern Food Microbiology. Journal of Food Science Education, 5(4), 62-62. Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A., Silverberg, G. D., Miller, M. C., . . . Sabo, E. (2006). RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta neuropathologica, 112(4), 405-415. Drechsel, D. N., Hyman, A., Cobb, M. H., & Kirschner, M. (1992). Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Molecular biology of the cell, 3(10), 1141-1154. Duan, Y., Dong, S., Gu, F., Hu, Y., & Zhao, Z. (2012). Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Translational neurodegeneration, 1(1), 24. Gilliland, S. E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology reviews, 7(1-2), 175-188. Goldberg, I. (2012). Functional foods: designer foods, pharmafoods, nutraceuticals: Springer Science & Business Media. Golde, T. E. (2002). Inflammation takes on Alzheimer disease. Nature Medicine, 8(9), 936-939. Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., . . . Klein, W. L. (2003). Alzheimer's disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings of the National Academy of Sciences, 100(18), 10417-10422. HANSEN, P. A., & Mocquot, G. (1970). Lactobacillus acidophilus (Moro) comb. nov. International Journal of Systematic and Evolutionary Microbiology, 20(3), 325-327. Hardy, J. (1997). Amyloid, the presenilins and Alzheimer's disease. Trends in neurosciences, 20(4), 154-159. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. science, 297(5580), 353-356. Hellström-Lindahl, E., Ravid, R., & Nordberg, A. (2008). Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with Aβ levels. Neurobiology of aging, 29(2), 210-221. Henry, W., Querfurth, H., & LaFerla, F. (2010). Mechanisms of disease Alzheimer's disease. New Engl J Med, 362, 329-344. Hoerr, R. A., & Bostwick, E. F. (2000). Bioactive proteins and probiotic bacteria: modulators of nutritional health: Elsevier. Huang, M.-T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., & Conney, A. H. (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer research, 51(3), 813-819. Ihara, Y., Hayabara, T., Sasaki, K., Kawada, R., Nakashima, Y., & Kuroda, S. (2000). Relationship between oxidative stress and apoE phenotype in Alzheimer's disease. Acta neurologica scandinavica, 102(6), 346-349. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P., . . . Saido, T. C. (2001). Metabolic regulation of brain Aβ by neprilysin. science, 292(5521), 1550-1552. Jeste, D. V., & Finkel, S. I. (2000). Psychosis of Alzheimer's disease and related dementias: diagnostic criteria for a distinct syndrome. The American Journal of Geriatric Psychiatry, 8(1), 29-34. Kalantzopoulos, G. (1997). Fermented products with probiotic qualities. Anaerobe, 3(2-3), 185-190. Kawamori, T., Lubet, R., Steele, V. E., Kelloff, G. J., Kaskey, R. B., Rao, C. V., & Reddy, B. S. (1999). Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer research, 59(3), 597-601. Klimova, B., & Kuca, K. (2016). Speech and language impairments in dementia. Journal of Applied Biomedicine, 14(2), 97-103. Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., . . . Jain, S. (2012). Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Experimental diabetes research, 2012. Kunchandy, E., & Rao, M. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58(3), 237-240. Liu, C. K., Lin, R., Chen, Y. F., Tai, C. T., Yen, Y. Y., & Howng, S. L. (1996). Prevalence of dementia in an urban area in taiwan. Journal of the Formosan Medical Association= Taiwan yi zhi, 95(10), 762-768. Mandelkow, E.-M., & Mandelkow, E. (1998). Tau in Alzheimer's disease. Trends in cell biology, 8(11), 425-427. Mangunwardoyo, W., & Usia, T. (2012). Antimicrobial and identification of active compound Curcuma xanthorrhiza Roxb. Matsuzaki, T., & Chin, J. (2000). Modulating immune responses with probiotic bacteria. Immunology and cell biology, 78(1), 67-73. Mattson, M. P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631-639. Misra, S., & Sahu, K. (1977). Screening of some indigenous plants for antifungal activity against dermatophytes. Indian journal of pharmacology, 9(4), 269. Mukrasch, M. D., Biernat, J., von Bergen, M., Griesinger, C., Mandelkow, E., & Zweckstetter, M. (2005). Sites of tau important for aggregation populate β-structure and bind to microtubules and polyanions. Journal of Biological Chemistry, 280(26), 24978-24986. Nagao, F., Nakayama, M., Muto, T., & Okumura, K. (2000). Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Bioscience, biotechnology, and biochemistry, 64(12), 2706-2708. Naidu, A., Xu, Q., Catalano, R., & Cordell, B. (2002). Secretion of apolipoprotein E by brain glia requires protein prenylation and is suppressed by statins. Brain research, 958(1), 100-111. Neet, K. E., & Thinakaran, G. (2008). Thematic minireview series on the molecular basis of Alzheimer disease. Journal of Biological Chemistry, 283(44), 29613-29614. Nilson, K., Shahani, K., Vakil, J., & Kilara, A. (1975). Pimaricin and Mycostatin for Retarding Cottage Cheese Spoilage1. Journal of dairy science, 58(5), 668-671. Passer, B., Pellegrini, L., Russo, C., Siegel, R. M., Lenardo, M. J., Schettini, G., . . . D'Adamio, L. (2000). Generation of an apoptotic intracellular peptide by gamma-secretase cleavage of Alzheimer's amyloid â protein precursor. Journal of Alzheimer's Disease, 2(3, 4), 289-301. Perl, D. P. (2010). Neuropathology of Alzheimer's disease. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 77(1), 32-42. Plummer, S. M., Holloway, K. A., Manson, M. M., Munks, R. J., Kaptein, A., Farrow, S., & Howells, L. (1999). Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kB activation via the NIK/IKK signalling complex. Oncogene, 18(44), 6013-6020. Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochemical Journal, 410(1), 147-155. Roberson, E. D., & Mucke, L. (2006). 100 years and counting: prospects for defeating Alzheimer's disease. science, 314(5800), 781-784. Roses, A. D., & Saunders, A. M. (1994). APOE is a major susceptibility gene for Alzheimer's disease. Current opinion in biotechnology, 5(6), 663-667. Saito, M., Eto, M., Nitta, H., Kanda, Y., Shigeto, M., Nakayama, K., . . . Kohara, K. (2004). Effect of apolipoprotein E4 allele on plasma LDL cholesterol response to diet therapy in type 2 diabetic patients. Diabetes Care, 27(6), 1276-1280. Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical reviews in food science and nutrition, 57(2), 344-371. Selkoe, D. J., & Schenk, D. (2003). Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annual review of pharmacology and toxicology, 43(1), 545-584. SHAH, N. (1993). Effectiveness of dairy products in alleviation of lactose intolerance. Food Australia, 45(6), 268-271. Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262-1277. Shtifman, A., Ward, C. W., Laver, D. R., Bannister, M. L., Lopez, J. R., Kitazawa, M., . . . Querfurth, H. W. (2010). Amyloid-β protein impairs Ca 2+ release and contractility in skeletal muscle. Neurobiology of aging, 31(12), 2080-2090. Smith, M. A., Drew, K. L., Nunomura, A., Takeda, A., Hirai, K., Zhu, X., . . . Sayre, L. M. (2002). Amyloid-β, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochemistry international, 40(6), 527-531. Songin, M., Jęśko, H., Czapski, G., Adamczyk, A., & Strosznajder, R. P. (2007). GSK-3β and oxidative stress in aged brain. Role of poly (ADP. Folia Neuropathologica, 45(4), 220-229. Sorrentino, G., & Bonavita, V. (2007). Neurodegeneration and Alzheimer's disease: the lesson from tauopathies. Neurological Sciences, 28(2), 63-71. Srinivasan, K. (1953). A chromatographic study of the curcuminoids in Curcuma longa, L. Journal of Pharmacy and pharmacology, 5(1), 448-457. Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International journal of food microbiology, 36(1), 1-29. Subramanian, M., Devasagayam, T. P., & Singh, B. (1994). Diminution of singlet oxygen-induced DNA damage by curcmin and related antioxidants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 311(2), 249-255. Tamura, M., Shikina, T., Morihana, T., Hayama, M., Kajimoto, O., Sakamoto, A., . . . Shida, K. (2007). Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: randomized double-blind, placebo-controlled clinical trial. International archives of allergy and immunology, 143(1), 75-82. Van Marum, R. J. (2008). Current and future therapy in Alzheimer's disease. Fundamental & clinical pharmacology, 22(3), 265-274. Vassar, R., & Cole, S. (2007). The basic biology of BACE1: a key therapeutic target for Alzheimer's disease. Current genomics, 8(8), 509-530. Wang, D.-S., Iwata, N., Hama, E., Saido, T. C., & Dickson, D. W. (2003). Oxidized neprilysin in aging and Alzheimer's disease brains. Biochemical and biophysical research communications, 310(1), 236-241. White, F., Nicoll, J., Roses, A., & Horsburgh, K. (2001). Impaired neuronal plasticity in transgenic mice expressing human apolipoprotein E4 compared to E3 in a model of entorhinal cortex lesion. Neurobiology of disease, 8(4), 611-625. Xing, Y., & Higuchi, K. (2002). Amyloid fibril proteins. Mechanisms of ageing and development, 123(12), 1625-1636. Yasojima, K., McGeer, E., & McGeer, P. (2001). Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain research, 919(1), 115-121. Zhou, F., Gong, K., Song, B., Ma, T., van Laar, T., Gong, Y., & Zhang, L. (2012). The APP intracellular domain (AICD) inhibits Wnt signalling and promotes neurite outgrowth. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(8), 1233-1241. Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J. W., Wu, X., . . . May, P. C. (2003). Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aß42 by inhibiting Rho. science, 302(5648), 1215-1217.
摘要: 阿茲海默症 (Alzheimer's disease) 或稱老人失智症,是一種發病進程緩慢、隨著時間不斷惡化的持續性神經功能障礙,目前研究學者將阿茲海默症視為一種神經退化疾病,疾病成因與大腦中纖維狀類澱粉胜肽 (β-amyloid peptide, Aβ) 的沉積有關。 Neprilysin (NEP) 為人體內一種酵素,可降解 Aβ以預防阿茲海默症的發生,但NEP的表現量會隨著年紀增長而減少。薑黃可以增加 NEP 的表現量並減緩Aβ 堆積現象,但薑黃之生物利用率不佳且不易被人體吸收,故效果有限。 本研究使用Lactobacillus acidophilus 和 Lactobacillus plantarum發酵薑黃,過濾離心後取得上清液,再利用細胞模式探討經乳酸菌發酵之薑黃是否可提升 NEP 蛋白表現量並且更有效地減緩 Aβ堆積。 由菌種篩選結果得到L. acidophilus 和 L. plantarum在薑黃中具有較佳之生長情形,故取L. acidophilus 和 L. plantarum 之薑黃發酵上清液與SH-SY5Y細胞共培養,最後將共培養後之細胞使用西方墨點法與ELISA分析NEP蛋白表現量和樣品降解Aβ之蛋白能力。 結果顯示經乳酸菌處理組別的NEP蛋白表現量均比未經乳酸菌發酵處理之Control組以及未經任何處理之 Vehicle組高,且在乳酸菌處理組別中,又以 L. acidophilus 10% 之 NEP 蛋白表現量最高。 以不同濃度之乳酸菌發酵液處理 SH-SY5Y細胞, L. a 100% 、L. a 10% 、L. p 100% 、L. p 10% 、Vehicle 、Control 各組別剩餘之 Aβ 含量分別為21830 pg/mL、4194 pg/mL、24436 pg/mL、4648 pg/mL、38497 pg/mL、27966.7 pg/mL,皆比Original之Aβ濃度 (172903 pg/mL) 低許多,其中經乳酸菌處理之組別皆比 Control、Vehicle低,並且以L. a 10% 最低,顯示L. a 10% 樣品降解 Aβ 類蛋白能力最佳,與NEP 蛋白表現量實驗有相同趨勢。 實驗結果顯示經乳酸菌處理後之薑黃能更有效提升 NEP 蛋白表現量與降解 Aβ 蛋白之能力。
Alzheimer's disease is a type of dementia that causes problems with memory, thinking and behavior. It is a chronic neurological dysfunction that symptoms usually develop slowly and get worse over time. The study showed that Alzheimer's disease as a kind of neurodegenerative disease. The disease is related to the fibrous β-amyloid peptide (Aβ) accumulated in brain. Neprilysin (NEP) is a kind of enzyme in body which can degrade Aβ and prevent the occurrence of Alzheimer's disease. However the level of NEP will decrease with age. The study showed that turmeric can increase the level of NEP and slow down the Aβ accumulation rate. Due to the poor bioavailability of turmeric, it is not easy to be absorbed by body. As a result, the physiological effect of turmeric is limited. This study uses turmeric as material for Lactobacillus acidophilus and Lactobacillus plantarum fermentation. Obtain the supernatant after centrifugation and filtration, then use the cell model to explore the samples to know whether it can enhance the level of NEP protein and degrade the Aβ accumulation or not. The result of bacteria screening showed that Lactobacillus acidophilus and Lactobacillus plantarum that fermented in turmeric grew better than other bacteria. Therefore, we treated the SH-SY5Y with fermentation supernatant, then used the Western blot and ELISA to analysis the the level of NEP and the Aβ-degrading activity respectively. The result of NEP level by treated with different concentration fermention was showed that the fermented group is higher than Control and Vehicle. Furthermore, the L. acidophilus 10% is the highest than others. Analysis the Aβ-degrading activity of SH-SY5Y treated with L. acidophilus 100%, L. acidophilus 10%, L. plantarum 10%, L. plantarum 100%, Vehicle, Control, we obtain the Aβ residue was 21830 pg/ml, 4194 pg/ml, 24436 pg/ml, 4648 pg/ml, 38497 pg/ml, 27966.7 pg/ml respectively. The results as above were far lower than Original group (172903 pg/ml). It also indicated that the LAB fermentation groups were lower than Control and Vehicle. Furthermore, the L. acidophilus 10% was the lowest. It showed L. acidophilus 10% had the best Aβ-degrading activity, as the same as the trend of NEP level result. These results indicate the supernatant from Lactobacillus acidophilus and Lactobacillus plantarum that fermented with Curcuma longa can effectively enhance the Neprilysin protein expression and degrade the β-amyloid.
URI: http://hdl.handle.net/11455/96022
文章公開時間: 2020-08-30
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.