Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96026
標題: Study on the characterization and oral effect on alcohol metabolism by probiotic Lactobacillus brevis YW108 and the recombinant expression of human acetaldehyde dehydrogenase in Kluyveromyces lactis
植生型乳酸菌株Lactobacillus brevis YW108代謝酒精之特性,對口服酒精代謝之影響以及重組人類乙醛脫氫酶於酵母菌株Kluyveromyces lactis表現之研究
作者: Yi-Ying Tsai
蔡一瑩
關鍵字: 酒精
乙醛脫氫酶
酒精脫氫酶
酵母菌
kluyveromyces lactis GG799
Lactobacillus Brevis YW108
alcohol
aldehyde dehydrogenase
alcohol dehydrogenase
yeast
kluyveromyces lactis GG799
Lactobacillus Brevis YW108
引用: 顏銘漢、林可寰、薛文傑:容易忽略的併發症--酒精戒斷症候群,台灣醫界 2011;54:578-584。 葉娟美、廖祐毅,民105,Lactobacillus brevis YW108生化特性分析技術報告 蘇志強,盧勇誌,侯釋淵,林銘燈,民98,建立呼氣酒精測試器管理機制之研究 Almeida, C.M., Gomes, D., Faro, C., and Simoes, I. (2015). Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl. Microbiol. Biotechnol. 99, 269–281. Amore, A., Amoresano, A., Birolo, L., Henrissat, B., Leo, G., Palmese, A., and Faraco, V. (2012). A family GH51 alpha-l-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Appl. Microbiol. Biotechnol. 94, 995–1006. Anders, A., Lilie, H., Franke, K., Kapp, L., Stelling, J., Gilles, E.D., and Breunig, K.D. (2006). The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J. Biol. Chem. 281, 29337–29348. Barreiro, L.B., Laval, G., Quach, H., Patin, E., and Quintana-Murci, L. (2008). Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345. Bayard, M., McIntyre, J., Hill, K.R., and Woodside, J. (2004). Alcohol withdrawal syndrome. Am. Fam. Physician 69, 1443–1450. Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G.D., et al. (2004). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22, 1554–1558. Brooks, P.J., Enoch, M.A., Goldman, D., Li, T.K., and Yokoyama, A. (2009a). The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption. Plos Med. 6. Brooks, P.J., Enoch, M.A., Goldman, D., Li, T.K., and Yokoyama, A. (2009b). The Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer from Alcohol Consumption. Plos Med. 6. Carr, F.J., Chill, D., and Maida, N. (2002). The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28, 281–370. Cederbaum, A.I. (2012). ALCOHOL METABOLISM. Clin. Liver Dis. 16, 667–685. Chen, C.H., Ferreira, J.C.B., Gross, E.R., and Mochly-Rosen, D. (2014). Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities. Physiol. Rev. 94, 1–34. Cregg, J.M., Cereghino, J.L., Shi, J.Y., and Higgins, D.R. (2000). Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52. Curtis, B.J., Zahs, A., and Kovacs, E.J. (2013). Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res 35, 97–113. De Pourcq, K., De Schutter, K., and Callewaert, N. (2010). Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87, 1617–1631. De Vuyst, L., and Leroy, F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194–199. Deng, X., and Deitrich, R.A. (2008). Putative role of brain acetaldehyde in ethanol addiction. Curr. Drug Abuse Rev. 1, 3–8. Edenberg, H.J. (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30, 5–13. Endo, A., Tanaka, N., Oikawa, Y., Okada, S., and Dicks, L. (2014). Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr. Microbiol. 68, 531–535. Eng, M.Y., Luczak, S.E., and Wall, T.L. (2007). ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol Res. Health J. Natl. Inst. Alcohol Abuse Alcohol. 30, 22–27. Eriksson, C.J.P. (2001). The role of acetaldehyde in the actions of alcohol (Update 2000). Alcohol.-Clin. Exp. Res. 25, 15s–32s. Feng, Y.M., Zhang, B.Y., Zhang, Y.S., and Fukuhara, H. (1997). Secretory expression of porcine insulin precursor in Kluyveromyces lactis and its conversion into human insulin. Acta Biochim. Biophys. Sin. 29, 129–134. Fleer, R., Xin, J.C., Amellal, N., Yeh, P., Fournier, A., Guinet, F., Gault, N., Faucher, D., Folliard, F., Fukuhara, H., et al. (1991). High-Level Secretion of Correctly Processed Recombinant Human Interleukin-1-Beta in Kluyveromyces-Lactis. Gene 107, 285–295. Flores, C.L., Rodriguez, C., Petit, T., and Gancedo, C. (2000). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. Fems Microbiol. Rev. 24, 507–529. Gemma, S., Vichi, S., and Testai, E. (2006). Individual susceptibility and alcohol effects:biochemical and genetic aspects. Ann Ist Super Sanita 42, 8–16. Gibson, G.R., and Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412. Gilliland, S.E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7, 175–188. Goedde, H.W., Agarwal, D.P., Fritze, G., Meier-Tackmann, D., Singh, S., Beckmann, G., Bhatia, K., Chen, L.Z., Fang, B., and Lisker, R. (1992). Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 88, 344–346. Gross, E.R., Zambelli, V.O., Small, B.A., Ferreira, J.C.B., Chen, C.-H., and Mochly-Rosen, D. (2015). A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 2*2 variant. Annu. Rev. Pharmacol. Toxicol. 55, 107–127. Hodgson, J. (1993). Expression systems: a user's guide. Emphasis has shifted from the vector construct to the host organism. Biotechnol. N 11, 887–893. Hollenberg, C.P., and Gellissen, G. (1997). Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560. Hugenholtz, J., Sybesma, W., Groot, M.N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J.-C., Eggink, G., Smid, E.J., et al. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82, 217–235. Hurley, T.D., Edenberg, H.J., and Li, T.-K. (2002). Pharmacogenomics of Alcoholism. In Pharmacogenomics, J. Licinio, and -Li Wong, eds. (Wiley-VCH Verlag GmbH & Co. KGaA), pp. 417–441. Husemoen, L.L.N., Fenger, M., Friedrich, N., Tolstrup, J.S., Fredriksen, S.B., and Linneberg, A. (2008). The Association of ADH and ALDH Gene Variants With Alcohol Drinking Habits and Cardiovascular Disease Risk Factors. Alcohol.-Clin. Exp. Res. 32, 1984–1991. Ishak, K.G., Zimmerman, H.J., and Ray, M.B. (1991). Alcoholic liver disease: pathologic, pathogenetic and clinical aspects. Alcohol. Clin. Exp. Res. 15, 45–66. Jo, H.J., Noh, J.S., and Kong, K.H. (2013). Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expr. Purif. 90, 84–89. Joenje, H. (2011). METABOLISM Alcohol, DNA and disease. Nature 475, 45–46. Koo, O.K., Jeong, D.-W., Lee, J.M., Kim, M.J., Lee, J.-H., Chang, H.C., Kim, J.H., and Lee, H.J. (2005). Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27, 505–510. Kosten, T.R., and O'Connor, P.G. (2003). Management of drug and alcohol withdrawal. N. Engl. J. Med. 348, 1786–1795. Krijger, J.J., Baumann, J., Wagner, M., Schulze, K., Reinsch, C., Klose, T., Onuma, O.F., Simon, C., Behrens, S.E., and Breunig, K.D. (2012). A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb. Cell Factories 11. Kunji, E.R.S., Slotboom, D.-J., and Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610, 97–108. Lachance, M.A. (2007). Current status of Kluyveromyces systematics. Fems Yeast Res. 7, 642–645. Larson, H.N., Weiner, H., and Hurley, T.D. (2005). Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase 'Asian' variant. J. Biol. Chem. 280, 30550–30556. Le Loir, Y., Azevedo, V., Oliveira, S.C., Freitas, D.A., Miyoshi, A., Bermúdez-Humarán, L.G., Nouaille, S., Ribeiro, L.A., Leclercq, S., Gabriel, J.E., et al. (2005). Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb. Cell Factories 4, 2. Lee, S.-L., Chau, G.-Y., Yao, C.-T., Wu, C.-W., and Yin, S.-J. (2006). Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 30, 1132–1142. Leroy, F., Degeest, B., and De, V.L. (2002). A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73, 251–259. Li, D., Zhao, H., and Gelernter, J. (2012). Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737. Li, W., Yu, S., Zhang, T., Jiang, B., Stressler, T., Fischer, L., and Mu, W. (2015). Efficient Biosynthesis of Lactosucrose from Sucrose and Lactose by the Purified Recombinant Levansucrase from Leuconostoc mesenteroides B-512 FMC. J Agric Food Chem 63, 9755–9763. Liu, B., Gong, X., Chang, S.H., Yang, Y.L., Song, M., Duan, D.M., Wang, L.N., Ma, Q.J., and Wu, J. (2009). Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 143, 95–102. Madhavan, A., and Sukumaran, R.K. (2015). Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem. Eng. J. 102, 31–37. Matsushita, S., and Higuchi, S. (2017). Use of Asian samples in genetic research of alcohol use disorders: Genetic variation of alcohol metabolizing enzymes and the effects of acetaldehyde. Am. J. Addict. Merico, A., Capitanio, D., Vigentini, I., Ranzi, B.M., and Compagno, C. (2004). How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. J. Biotechnol. 109, 139–146. Morozova, T.V., Goldman, D., Mackay, T.F.C., and Anholt, R.R.H. (2012). The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol. 13. Mu, W., Chen, Q., Wang, X., Zhang, T., and Jiang, B. (2013). Current studies on physiological functions and biological production of lactosucrose. Appl. Microbiol. Biotechnol. 97, 7073–7080. Ohkusa, T., Ozaki, Y., Sato, C., Mikuni, K., and Ikeda, H. (1995). Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora. Digestion 56, 415–420. de Oliveira, M.R., da Silva, R.S.S.F., Buzato, J.B., and Celligoi, M.A.P.C. (2007). Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem. Eng. J. 37, 177–183. Osier, M.V., Pakstis, A.J., Soodyall, H., Comas, D., Goldman, D., Odunsi, A., Okonofua, F., Parnas, J., Schulz, L.O., Bertranpetit, J., et al. (2002). A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99. Paton, A. (2005). Alcohol in the body. BMJ 330, 85–87. Polimanti, R., and Gelernter, J. (2017). ADH1B: From alcoholism, natural selection, and cancer to the human phenome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. Prat, G., Adan, A., and Sanchez-Turet, M. (2009). Alcohol hangover: a critical review of explanatory factors. Hum. Psychopharmacol.-Clin. Exp. 24, 259–267. Praznik, W., Spies, T., and Hofinger, A. (1992). Fructo-oligosaccharides from the stems of Triticum aestivum. Carbohydr. Res. 235, 231–238. Raimondi, S., Uccelletti, D., Amaretti, A., Leonardi, A., Palleschi, C., and Rossi, M. (2010). Secretion of Kluyveromyces lactis Cu/Zn SOD: strategies for enhanced production. Appl. Microbiol. Biotechnol. 86, 871–878. Renault, P. (2002). Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 84, 1073–1087. Robin, S., Petrov, K., Dintinger, T., Kujumdzieva, A., Tellier, C., and Dion, M. (2003). Comparison of three microbial hosts for the expression of an active catalytic scFv. Mol. Immunol. 39, 729–738. Saliola, M., Mazzoni, C., Solimando, N., Crisa, A., Falcone, C., Jung, G., and Fleer, R. (1999). Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis. Appl. Environ. Microbiol. 65, 53–60. Shin, M.-J., Cho, Y., and Davey Smith, G. (2017). Alcohol Consumption, Aldehyde Dehydrogenase 2 Gene Polymorphisms, and Cardiovascular Health in Korea. Yonsei Med. J. 58, 689–696. Spohner, S.C., Schaum, V., Quitmann, H., and Czermak, P. (2016). Kluyveromyces lactis: An emerging tool in biotechnology. J. Biotechnol. 222, 104–116. Steinmetz, C.G., Xie, P.G., Weiner, H., and Hurley, T.D. (1997). Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion. Structure 5, 701–711. Sun, J., Shao, Z.Y., Zhao, H., Nair, N., Wen, F., Xu, J.H., and Zhao, H.M. (2012). Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082–2092. Swennen, D., Paul, M.F., Vernis, L., Beckerich, J.M., Fournier, A., and Gaillardin, C. (2002). Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis. Microbiol.-Sgm 148, 41–50. Tephly, T.R. (1991). The Toxicity of Methanol. Life Sci. 48, 1031–1041. Tokunaga, M., Ishibashi, M., Tatsuda, D., and Tokunaga, H. (1997). Secretion of mouse alpha-amylase from Kluyveromyces lactis. Yeast 13, 699–706. Vacca, V.M., and Correllus, D.F. (2013). Alcohol poisoning. Nursing (Lond.) 43, 14–16. Van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., et al. (1999). Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 81, 121–132. Welman, A.D., and Maddox, I.S. (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21, 269–274. Wiel, A. van de, Moolenaar, D., and Wielders, J. (2012). The Bac(chus) experiment: blood alcohol concentrations after wine tasting. Wine Stud. 2, 1. Wiese, J.G., Shlipak, M.G., and Browner, W.S. (2000). The alcohol hangover. Ann. Intern. Med. 132, 897–902. YOKOI, A., MARUYAMA, T., YAMANAKA, R., EKUNI, D., TOMOFUJI, T., KASHIWAZAKI, H., YAMAZAKI, Y., and MORITA, M. (2015). Relationship between acetaldehyde concentration in mouth air and tongue coating volume. J. Appl. Oral Sci. 23, 64–70. Zakhari, S. (2006). Overview: how is alcohol metabolized by the body? Alcohol Res. Health J. Natl. Inst. Alcohol Abuse Alcohol. 29, 245–254. Zakhari, S. (2013). Alcohol metabolism and epigenetics changes. Alcohol Res 35, 6–16. Zhao, Y., and Wang, C. (2015). Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases. BioMed Res. Int. 2015. Zhu, Y., Zhang, Y., and Li, Y. (2009). Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biotechnol. 83, 597–610.
摘要: 現代人因為職場文化與飲食改變影響,工作忙碌經常外食,或為了工作而時常喝酒應酬,長久下來,因過度飲酒,容易導致隔天宿醉,沒有精神上班、工作效率差,又基因缺陷問題,部分東方人對於代謝乙醛(酒精代謝之中間物)的效率較差,主因為代謝乙醛的乙醛脫氫酶(Aldehyde dehydrogenase, ALDH)突變,導致代謝活性大幅降低。 實驗室先前研究由自然醱酵酸白菜醱酵汁,篩選出能較耐受酒精之菌株,再進一步以高效能液相層析儀分析,觀察其代謝酒精情況,最後以YW108代謝酒精效果最好。因此,第一部分針對YW108進行益生質和市售酒分析,實驗室生產之果寡糖有助於YW108生長;另一方面對不同濃度市售酒之耐受性進行分析,發現以梅酒和小麥製的威士忌有促進YW108生長的趨勢,以此篩選出之市售酒進行接下來的人體試驗。 在人體實驗方面,先給予受試者足量的乳酸菌YW108,再讓受試者飲用酒品,並進行酒測及SGC分析,分析人體內乙醇和乙醛量的變化。本研究進行人體試驗證明實驗室篩選之乳酸菌YW108經誘導後,能降低基因型為ADH*2/*2和ALDH*1/*1受測者的酒測值;而基因型較差者,由於飲酒搭配口服YW108無法舒緩飲酒後不適症狀,反而是一種負擔。 最後,在重組人類乙醛脫氫酶於安全/食品級菌株之表現方面,實驗室先前研究,來自人類之乙醛脫氫酶,在原核微生物中雖可表現,但蛋白質摺疊可能與真核有差異,而未測得乙醛脫氫酶活性。因此,此部分將探討改選用酵母菌kluyveromyces lactis GG799這株真核表現系統,來進行乙醛脫氫酶的生產,但由於酵母菌訊息胜肽未被切除,使得蛋白無法分泌到胞外,而目前所表現的ALDH位在胞內不可溶的部位,未來將進一步純化分析。
The high fat and high alcohol diet culture of Asia people effects the public health in recent decade such as terrible hangover. Moreover, about a part of Asia people suffer from metabolizing acetaldehyde ( intermediate of alcohol metabolism ) due to the gene mutation. The main reason is the mutation of aldehyde dehydrogenase ( ALDH ) leading to dramatically drop of enzyme activity. Previously, our lab screened a probiotic strain from fermented sour cabbage liquid and then analyzed the alcohol metabolism ability of screened strains, among all, Lactobacillus Brevis YW108 exhibited the best ability on alcohol metabolism. In the first part of this study, we examined the Lab produced levan and fructooligosaccharides as prebiotic to YW108 to choose a proper commercial wine for human trial. On the other hand, the tolerance of various commercially available wine with various alcohol concentration were analyzed. The pulm wine and whisky promoted the growth of YW108 and were choosen for human trials. For human trial, the subjects were given a sufficient amount of YW108 and various wine to drink. Lion alcolmeter 400 and SGC analysis was performed to analyze the changes of ethanol and acetaldehyde in vivo. In another part of this study, the expression of human recombinant acetaldehyde dehydrogenase was proceded by using yeast kluyveromyces lactis GG799 eukaryotic expression system. As the yeast signal peptide was not removed, the rALDH located in the intracellular insoluble fraction and need further investigation will be further purification analysis.
URI: http://hdl.handle.net/11455/96026
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.