Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96028
標題: Preparation and sustained release property of gastro-floating tablets of roselle extract
洛神葵萃取物之胃漂浮錠研發及其緩釋效果
作者: Hai-Yao Wu
吳海瑤
關鍵字: 洛神葵
花青素
胃漂浮緩釋錠
釋放動力學
Roselle
Anthocyanins
Gastro-floating sustained release tablets
Release kinetics
引用: 朱盛山。 (2003)。药物新剂型发展概况。广东药学, 13(4), 29-31。 李玉珠, 杜木英, 何瑞, & 王雪婷。 (2017)。 玫瑰茄花萼生理活性成分及其开发利用研究进展。中国调味品, 42(6), 170-174。 李慧芳。2011。马来酸曲美布汀胃漂浮片的研究。山西医科大学碩士論文。山西,中國。 林山陽。(2003)。藥品生體利用率與臨床療效。 後基因體時代之生物技術. 醫藥基因生物技術教學資源中心, 191-203。 林鴻龍。 (2009)。 紫米花青素萃取最適化及其在飲品系統模式安定性之研究。 國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 林麗娟。 (1994)。X 光繞射原理及其應用。X 光材料分析技術與應用專題。 施韋慈。 (2017)。 大豆豆渣、豆漿泡沫之機能成分分析、其複合錠劑製備及釋放評估。 國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 胡雅馨, 李京, & 惠伯棣。 (2006)。 蓝莓果实中主要营养及花青素成分的研究。 姬海婷。 (2015)。 灯盏花素胃漂浮缓释片的研究。 吉林大学。 袁伟栋, 孙进, & 何仲贵。 (2009)。格列吡嗪缓释微丸的制备及体外释放度考察。 中国药剂学杂志: 网络版(6), 409-416。 許明照。 (1998)。 錠劑處方探討與研究.藥學雜誌, vol. 14 (pp. 118). 臺北市: 中華民國藥師公會全國聯合會。 許俊祥。 (2017)。以流動床腔體模組探討複合多層次薑黃粉粒製備及其品質與釋放特性評估。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 郭孟鎧。(2002)。Oxatomide 錠劑之配方設計及研究。中國醫藥大學藥物化學研究所碩士論文。台中,台灣。 黄东坡, 王远, 陈军, 蒋国强 & 丁富新。 (2002)。盐酸二甲双胍胃漂浮缓释片的制备及体外释放。 中国医药工业杂志, 33(10), 483-486。 彭斌, 李红艳, & 邓泽元。 (2016)。 食品中花青素在热加工中的降解及其机制研究。食品安全质量检测学报, 7(10), 3851-3858。 童馨葦。 (2017)。不同酸鹼度下花青素的光學性質、抗氧化活性的研究及應用。山西大学碩士論文。山西,中國。 黃玉鈴。 (2015)。綠茶粉及綠茶萃取物之多顆粒緩釋錠劑研發及其物性評估。 國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 黃明得, 江瑞拱 & 楊正山。(1998)。 發展台東區少量多樣化農特產. 台灣省台東區農業改良場七十週年紀念專刊。台東,台灣。. 劉正雄。 (2006)。 藥物劑型與遞藥系統。九州圖書公司。 赵新慧, 刘陶世 & 段金廒。 (2007)。羟丙基甲基纤维素对左金胃漂浮缓释片的漂浮性能和药物释放特征的影响。中成药期刊, 29(7), 988-992。 陈力, 刘砚韬, 黄亮 & 张伶俐。 (2008)。 缓控释系统药物释放的数学模型研究进展。 中国药业, 17(11), 1-4。 陳進分。(2014)。介紹洛神葵新品種-紅斑馬及吉利。臺東區農業專訊, (88): 9-12。 侯勝茂。(2006)。中華藥典。行政院衛生署, 第六版, 臺北。 錢建瑛。(2008)。黃芪胃漂浮片製備工藝和品質標準研究。北京中醫藥大學碩士論文。北京,中國。 A.O.A.C. 2000. Official Methods of Analysis, 17th ed. DC: The Association of Official Analytical Chemists. Abou-Arab, A. A., Abu-Salem, F. M., & Abou-Arab, E. A. (2011). Physico- chemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus subdariffa) (Vol. 7). Alexandra Pazmiño-Durán, E., Mónica Giusti, M., Wrolstad, R. E., & Glória, M. B. A. (2001). Anthocyanins from Oxalis triangularis as potential food colorants. Food Chemistry, 75(2), 211-216. Andersen, Ø. M., & Jordheim, M. (2001). Anthocyanins. IneLS): John Wiley & Sons, Ltd. Anonymous. (2008). Preparing buffer systems. In, vol. 2008). Aurelio, D. L., Edgardo, R. G., & Navarro‐Galindo, S. (2008). Thermal kinetic degradation of anthocyanins in a roselle (Hibiscus sabdariffa L. cv.'Criollo') infusion. International journal of food science & technology, 43(2), 322-325. Baumgartner, S., Kristl, J., Vrečer, F., Vodopivec, P., & Zorko, B. (2000). Optimisation of floating matrix tablets and evaluation of their gastric residence time. International journal of pharmaceutics, 195(1-2), 125-135. Benelli, L., Cortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2015). Fluid bed drying and agglomeration of phytopharmaceutical compositions. Powder Technology, 273, 145-153. Braga, A. R. C., Murador, D. C., de Souza Mesquita, L. M., & de Rosso, V. V. (2018). Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis, 68, 31-40. Bruschi, M. L. (2015). Mathematical models of drug release Strategies to Modify the Drug Release from Pharmaceutical Systems. Cai, Z., Song, L., Qian, B., Xu, W., Ren, J., Jing, P., & Oey, I. (2018). Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chemistry, 245, 463-470. Carr Jr, R. L. (1965). Evaluating flow properties of solids. Chem. Eng.(Jan.), 18, 163-168. Carvajal-Zarrabal, O., Barradas-Dermitz, D. M., Orta-Flores, Z., Hayward-Jones, P. M., Nolasco-Hipólito, C., Aguilar-Uscanga, M. G., Miranda-Medina, A., & Bujang, K. B. (2012). Hibiscus sabdariffa L., roselle calyx, from ethnobotany to pharmacology. Journal of experimental pharmacology, 4, 25. Carvajal-Zarrabal, O., Waliszewski, S. M., Barradas-Dermitz, D. M., Orta-Flores, Z., Hayward-Jones, P. M., Nolasco-Hipolito, C., Angulo-Guerrero, O., Sanchez-Ricano, R., Infanzon, R. M., & Trujillo, P. R. (2005). The consumption of Hibiscus sabdariffa dried calyx ethanolic extract reduced lipid profile in rats. Plant Foods Hum Nutr, 60(4), 153-159. Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871. Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food chemistry, 86(1), 69-77. Cheminat, A., & Brouillard, R. (1986). PMR investigation of 3-O-(β-D-glucosyl) malvidin structural transformations in aqueous solutions. Tetrahedron letters, 27(37), 4457-4460. Clifford, M. N. (2000). Anthocyanins – nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1063-1072. Dao, L. T., Takeoka, G. R., Edwards, R. H., & Berrios, J. D. J. (1998). Improved method for the stabilization of anthocyanidins. J Agric Food Chem, 46(9), 3564-3569. De Leonardis, A., Pizzella, L., & Macciola, V. (2008). Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils. European journal of lipid science and technology, 110(10), 941-948. De Simone, V., Dalmoro, A., Lamberti, G., Caccavo, D., d'Amore, M., & Barba, A. A. (2018). HPMC granules by wet granulation process: Effect of vitamin load on physicochemical, mechanical and release properties. Carbohydrate polymers, 181, 939-947. Del Pozo-Insfran, D., Brenes, C. H., & Talcott, S. T. (2004). Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.). J Agric Food Chem, 52(6), 1539-1545. Delaney, S. P., Nethercott, M. J., Mays, C. J., Winquist, N. T., Arthur, D., Calahan, J. L., Sethi, M., Pardue, D. S., Kim, J., & Amidon, G. (2017). Characterization of synthesized and commercial forms of magnesium stearate using differential scanning calorimetry, Thermogravimetric analysis, Powder x-ray diffraction, and solid-state NMR spectroscopy. Journal of pharmaceutical sciences, 106(1), 338-347. Du, C., & Francis, F. (1973). Anthocyanins of roselle (Hibiscus sabdariffa, L.). Journal of Food Science, 38(5), 810-812. Essa, E. A., Elkotb, F. E., Zin Eldin, E. E., & El Maghraby, G. M. (2015). Development and evaluation of glibenclamide floating tablet with optimum release. Journal of Drug Delivery Science and Technology, 27, 28-36. Everett, M. (1953). Effect of carbohydrates and other factors on strawberry product. Journal of Agricuture. Food Chemistry, 1, 574. Evina, V. J. E., De Taeye, C., Niemenak, N., Youmbi, E., & Collin, S. (2016). Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT-Food Science and Technology, 68, 514-522. Fasoyiro, S., Ashaye, O., Adeola, A., & Samuel, F. (2005). Chemical and storability of fruit-flavoured (Hibiscus sabdariffa) drinks. World J. Agric. Sci, 1(2), 165-168. Fernández-Arroyo, S., Rodríguez-Medina, I. C., Beltrán-Debón, R., Pasini, F., Joven, J., Micol, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2011). Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Research International, 44(5), 1490-1495. Fernández‐Arroyo S, Herranz‐López M, Beltrán‐Debón R, (2012), Bioavailability study of a polyphenol‐enriched extract from H ibiscus sabdariffa in rats and associated antioxidant status. Molecular nutrition & food research, 56(10): 1590-1595. Francis, F. J., & Markakis, P. C. (1989). Food colorants: Anthocyanins. Critical reviews in food science and nutrition, 28(4), 273-314. Fuhrman, B., Lavy, A., & Aviram, M. (1995). Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. The American journal of clinical nutrition, 61(3), 549-554. Furtado, P., Figueiredo, P., das Neves, H. C., & Pina, F. (1993). Photochemical and thermal degradation of anthocyanidins. Journal of Photochemistry and Photobiology A: Chemistry, 75(2), 113-118. Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., & Zabetakis, I. (2004). The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria× ananassa). Food Chemistry, 88(1), 7-10. Garzon, G., & Wrolstad, R. (2002). Comparison of the Stability of Pelargonidin‐based Anthocyanins in Strawberry Juice and Concentrate. Journal of Food Science, 67(4), 1288-1299. Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry): John Wiley & Sons, Inc. Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current protocols in food analytical chemistry. Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225. Goufo, P., & Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ‐oryzanol, and phytic acid. Food science & nutrition, 2(2), 75-104. Gowd, V., Jia, Z., & Chen, W. (2017). Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology, 68, 1-13. Harborne, J. B. (2013). The flavonoids: advances in research since 1980: Springer. Hirunpanich, V., Utaipat, A., Morales, N. P., Bunyapraphatsara, N., Sato, H., Herunsalee, A., & Suthisisang, C. (2005). Antioxidant effects of aqueous extracts from dried calyx of Hibiscus sabdariffa Linn.(Roselle) in vitro using rat low-density lipoprotein (LDL). Biological and Pharmaceutical Bulletin, 28(3), 481-484. Huang, H. (1955). Fruit color destruction, decolorization of anthocyanins by fungal enzymes. J Agric Food Chem, 3(2), 141-146. Ismail, A., Ikram, E. H. K., & Nazri, H. S. M. (2008). Roselle (Hibiscus sabdariffa L.) seeds-nutritional composition, protein quality and health benefits. Food, 2(1), 1-16. Jabeur, I., Pereira, E., Barros, L., Calhelha, R. C., Soković, M., Oliveira, M. B. P., & Ferreira, I. C. (2017). Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International, 100, 717-723. Jackman, R., Yada, R., & A. Tung, M. (1987). A Review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis (Vol. 11). Jahan, M. S., Saeed, A., He, Z., & Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451-459. Kader, F., Irmouli, M., Zitouni, N., Nicolas, J.-P., & Metche, M. (1999). Degradation of cyanidin 3-glucoside by caffeic acid o-quinone. Determination of the stoichiometry and characterization of the degradation products. J Agric Food Chem, 47(11), 4625-4630. Kader, F., Rovel, B., Girardin, M., & Metche, M. (1997). Mechanism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). Partial purification and characterisation of blueberry polyphenol oxidase. J. of the Sci. of Food and Agric., 73(4), 513-516. Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85-89. Kamei, H., Hashimoto, Y., Koide, T., Kojima, T., & Hasegawa, M. (1998). Anti-tumor effect of methanol extracts from red and white wines. Cancer biotherapy & radiopharmaceuticals, 13(6), 447-452. Karna, S., Chaturvedi, S., Agrawal, V., & Alim, M. (2015). Formulation approaches for sustained release dosage forms: a review. Asian J Pharm Clin Res, 8(5), 46-53. Kim, S., Park, J. B., & Hwang, I. K. (2002). Quality attributes of various varieties of Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure. Journal of Food Science, 67(8), 2957-2961. Kong, J.-M., Chia, L.-S., Goh, N.-K., Chia, T.-F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923-933. Krögel, I., & Bodmeier, R. (1999). Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder. Journal of controlled release, 61(1-2), 43-50. Lapornik, B., Prošek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of food engineering, 71(2), 214-222. Leuenberger, H. (1982). The compressibility and compactibility of powder systems. International Journal of Pharmaceutics, 12(1), 41-55. Liu, Y., Song, X., Han, Y., Zhou, F., Zhang, D., Ji, B., Hu, J., Lv, Y., Cai, S., & Wei, Y. (2010). Identification of anthocyanin components of wild Chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries. J Agric Food Chem, 59(1), 356-363. Liuqing, Y., Ying, G., Ting, Z., Jiangli, Z., Fang, L., Bingtao, Z., & Xiangyang, W. (2012). Antioxidant capacity of extracts from calyx fruits of roselle (Hibiscus sabdariffa L.). African Journal of Biotechnology, 11(17), 4063-4068. Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 153, 361-370. Manivannan, R. (2009). Oral disintegrating tablets: A future compaction. Drug Invention Today, 1(1), 61-65. Markakis, P. (1982). Stability of anthocyanins in foods (Vol. 245): Academic Press, New York. Markakis, P., & Jurd, L. (1974). Anthocyanins and their stability in foods. C R C Critical Reviews in Food Technology, 4(4), 437-456. Meschter, E. E. (1953). Fruit color loss, effects of carbohydrates and other factors on strawberry products. J Agric Food Chem, 1(8), 574-579. Metrouh-Amir, H., Duarte, C. M., & Maiza, F. (2015). Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Industrial Crops and Products, 67, 249-256. Mitra, A. K., Kwatra, D., & Vadlapudi, A. D. (2014). Drug delivery: Jones & Bartlett Publishers. Mohamed, J., Shing, S. W., Idris, M. H. M., Budin, S. B., & Zainalabidin, S. (2013). The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. Clinics, 68(10), 1358-1363. Nielsen, I. L. F., Haren, G. R., Magnussen, E. L., Dragsted, L. O., & Rasmussen, S. E. (2003). Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. Journal of Agricultural and Food Chemistry, 51(20), 5861-5866. Nnam, N., & Onyeke, N. (2003). Chemical composition of two varieties of sorrel (Hibiscus sabdariffa L.), calyces and the drinks made from them. Plant foods for human nutrition, 58(3), 1-7. Palamidis, N., & Markakis, P. (1975). Stability of grape anthocyanin in a carbonated beverage. Journal of Food Science, 40(5), 1047-1049. Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308-313. Pifferi, P., & Cultrera, R. (1974). Enzymatic degradation of anthocyanins: the role of sweet cherry polyphenol oxidase. Journal of Food Science, 39(4), 786-791. Poei‐Langston, M., & Wrolstad, R. (1981). Color degradation in an ascorbic acid‐anthocyanin‐flavanol model system. Journal of Food Science, 46(4), 1218-1236. Rahim, S. A., Carter, P., & Elkordy, A. A. (2017). Influence of calcium carbonate and sodium carbonate gassing agents on pentoxifylline floating tablets properties. Powder Technology, 322, 65-74. Raza, A., Bukhari, N. I., Karim, S., Hafiz, M. A., & Hayat, U. (2017). Floating tablets of minocycline hydrochloride: Formulation, in-vitro evaluation and optimization. Future Journal of Pharmaceutical Sciences, 3(2), 131-139. Rein, M. (2005). Copigmentation Reactions and Color Stability of Berry Anthocyanins. Reverchon, E., Lamberti, G., & Antonacci, A. (2008). Supercritical fluid assisted production of HPMC composite microparticles. The Journal of Supercritical Fluids, 46(2), 185-196. Riaz, G., & Chopra, R. (2018). A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy, 102, 575-586. Schaich, K., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111-125. Sheth P R,&Tossounian J. (1984). The hydrodynamically balanced system (HBS™): a novel drug delivery system for oral use. Drug Development and Industrial Pharmacy, 10(2): 313-339. Si, L. Y.-N., Ali, S. A. M., Latip, J., Fauzi, N. M., Budin, S. B., & Zainalabidin, S. (2017). Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction. Life Sciences, 191, 157-165. Singh B. N., & Kim K H. (2000). Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. Journal of Controlled release, 63(3): 235-259. Si, L. Y.-N., Kamisah, Y., Ramalingam, A., Lim, Y. C., Budin, S. B., & Zainalabidin, S. (2017). Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats. Applied Physiology, Nutrition, and Metabolism, 42(7), 765-772. Sriamornsak, P., & Kennedy, R. A. (2008). Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. International journal of pharmaceutics, 358(1-2), 205-213. Takahama, U., Yamauchi, R., & Hirota, S. (2013). Isolation and characterization of a cyanidin-catechin pigment from adzuki bean (Vigna angularis). Food Chemistry, 141(1), 282-288. Talavéra, S. v., Felgines, C., Texier, O., Besson, C., Lamaison, J.-L., & Rémésy, C. (2003). Anthocyanins Are Efficiently Absorbed from the Stomach in Anesthetized Rats. J Nutr, 133(12), 4178-4182. Talavera S, Felgines C, Texier O, (2004),. Anthocyanins are efficiently absorbed from the small intestine in rats. The Journal of nutrition, 134(9): 2275-2279. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. Tseng, T.-H., Wang, C.-J., & Kao, E.-S. (1996). Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chemico-Biological Interactions, 101(2), 137-148. Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of nutrition, 133(7), 2125-2130. Turkmen, N., Velioglu, Y. S., Sari, F., & Polat, G. (2007). Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules, 12(3), 484-496. Vulić, J. J., Tumbas, V. T., Savatović, S. M., Đilas, S. M., Ćetković, G. S., & Čanadanović-Brunet, J. M. (2011). Polyphenolic content and antioxidant activity of the four berry fruits pomace extracts. Acta periodica technologica(42), 271-279. Wang, L.-S., Kuo, C.-T., Cho, S.-J., Seguin, C., Siddiqui, J., Stoner, K., Weng, Y.-I., Huang, T. H.-M., Tichelaar, J., & Yearsley, M. (2013). Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutrition and cancer, 65(1), 118-125. Wang, S., Chu, Z., Ren, M., Jia, R., Zhao, C., Fei, D., Su, H., Fan, X., Zhang, X., & Li, Y. (2017). Identification of Anthocyanin Composition and Functional Analysis of an Anthocyanin Activator in Solanum nigrum Fruits. Molecules, 22(6), 876. Wojdyło, A., Figiel, A., & Oszmiański, J. (2009). Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J Agric Food Chem, 57(4), 1337-1343.
摘要: 洛神葵花萼具有鮮艷的色澤主要是因為富含花青素,許多研究已經證實花青素具有良好的抗氧化活性,具有抗發炎、抗腫瘤、抗癌症、保護視力等生理功效,以及目前人們對保健食品的熱衷追求,越來越多的具有生理功效的原料被用來開發出很多的保健食品,錠劑作為保健食品常見的劑型載體之一,具有體積小、方便攜帶、成本低等優點,本實驗欲開發一款具緩釋功能的花青素錠劑,使其能夠在胃部環境中緩慢釋放,避免被腸道鹼性環境的破壞,以提高身體利用率。本實驗結果如下:以30%乙醇,在75℃條件下加熱20分鐘可以有效萃取出洛神葵花萼中的花青素,以HPLC進行分析其主要的花青素為飛燕草素,含量為126.34mg/100 g乾燥洛神葵花萼,且萃取物具有良好的DPPH、ABTS自由基清除能力與Fe3+還原能力;選擇常用的賦形劑進行製備洛神葵萃取粉胃漂浮緩釋錠,選擇適當比例的賦形劑製備得之錠劑可以在體外模擬胃液環境中快速起漂,且能夠持續漂浮12小時以上,在漂浮的過程中錠劑不會崩散,保持膠體骨架緩慢釋放內部的指標成分,隨著載藥量的提高,12小時的累積釋放量提高,指標成分的釋放符合零級動力學(R2>0.9),與Higuchi動力學方程的擬合度最高,說明本實驗製備之胃漂浮緩釋錠中的指標成分是以擴散方式釋放,指標成分的釋放累積量與時間平方根之間呈正比關係,且錠劑中指標成分的比例不會改變其釋放行為;在Korsmeyer-Peppas 釋放動力學模型的擬合結果顯示指標成分的釋放屬於Anomalous transport的釋放機制,代表指標成分的釋出是由擴散作用和骨架溶蝕協同作用,期待本實驗結果可為未來投入開發花青素緩釋錠奠定理論基礎。
Rosell calyxes are bright red due to their rich anthocyanin. Many studies have confirmed that anthocyanins have good antioxidant activity. They have many physiological functions such as anti-inflammatory, anti-tumor, anti-cancer, and protection of eyesight. At present, people are eagerly pursuing health foods, and more and more raw materials with physiological effects are used to develop a lot of health foods. Tablet is one of the common types of health foods, with advantages of small size, convenient carrying, low cost, etc. This experiment aims to develop sustained-release tablets by roselle extract powder, and it can be slowly released in the stomach while avoiding damage by the alkaline environment of the intestine to improve the bioavailability. The anthocyanins can be effectively extracted by heating at 75 ℃ for 30 minutes by 30% ethanol. HPLC results showed that the main anthocyanin type of extract was delphinidin, and its content was 126.34 mg/100 g of dried roselle calyces. Also, the DPPH, ABTS free radical scavenging capacity and Fe3+ reducing ability of extract were good. The roselle extract gastro-floating sustained-release tablets prepared with the appropriate proportion of excipients can be quickly floated, and can continuously floating over 12 hours in vitro simulated gastric fluid environment. During the process, the tablets will not disintegrate, keeping the colloidal skeleton slowly releasing the internal index components.With the content of extract powder increased, the cumulative release at 12 hours will increase, and the release of the index components will follow the zero-order kinetics (R2>0.9). The value of R2 with Higuchi kinetic equation was the highest, indicating that the index component in the gastric floating sustained-release tablets prepared in this experiment were released in a diffusion manner, and the release of index components was accumulated. There is a positive relationship between the square root of the time and the cumulative release, and the content of extract powder not change the release behavior. In the Korsmeyer-Peppas release kinetic model showed that the release mechanism of the index component was anomalous transport, representing there was a synergistic effect of diffusion and skeleton erosion. The results of this experiment can lay a theoretical foundation for future development of anthocyanin sustained-release tablets.
URI: http://hdl.handle.net/11455/96028
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.