Please use this identifier to cite or link to this item:
標題: Research on improving contents of total polyphenols and polysaccharides when introduction of lactic acid bacteria into traditional fermentation process of fruit vinegar
作者: Yu-Chih Lin
關鍵字: 酵母菌
lactic acid bacteria
acetic acid bacteria
total polyphenols
total polysaccharides
引用: Ahlgren, J. A., & Cote, G. L. (2003). Purification of alternanase by affinity chromatography. J Ind Microbiol Biotechnol, 30, 114-117. Ahmed, Z., Wang, Y., Anjum, N., Ahmad, H., Ahmad, A., & Raza, M. (2013). Characterization of new exopolysaccharides produced by coculturing of L. kefiranofaciens with yoghurt strains. Int J Biol Macromol, 59, 377-383. Ainsworth, S., Sadovskaya, I., Vinogradov, E., Courtin, P., Guerardel, Y., Mahony, J., Grard, T., Cambillau, C., Chapot-Chartier, M. P., & van Sinderen, D. (2014). Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. MBio, 5, e00880-00814. Ando, H., Kurata, A., & Kishimoto, N. (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavor component of Japanese sake (Ginjo-shu). J Appl Microbiol, 118, 873-880. Bouazza, A., Bitam, A., Amiali, M., Bounihi, A., Yargui, L., & Koceir, E. A. (2016). Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm Biol, 54, 260-265. Bounihi, A., Bitam, A., Bouazza, A., Yargui, L., & Koceir, E. A. (2017). Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. Pharm Biol, 55, 43-52. Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Rodenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? Br JNutr, 1-15. Carson, C. F., Ash, O., & Chakera, A. (2017). In vitro data support the investigation of vinegar as an antimicrobial agent for PD-associated Pseudomonas exit site infections. Nephrology (Carlton), 22, 179-181. Cejudo Bastante, M. J., Duran Guerrero, E., Castro Mejias, R., Natera Marin, R., Rodriguez Dodero, M. C., & Barroso, C. G. (2010). Study of the polyphenolic composition and antioxidant activity of new sherry vinegar-derived products by maceration with fruits. J Agric Food Chem, 58, 11814-11820. Cerezo, A. B., Alvarez-Fernandez, M. A., Hornedo-Ortega, R., Troncoso, A. M., & Garcia-Parrilla, M. C. (2014). Phenolic composition of vinegars over an accelerated aging process using different wood species (acacia, cherry, chestnut, and oak): effect of wood toasting. J Agric Food Chem, 62, 4369-4372. Chaosomboon, A., Phupet, B., Rattanaporn, O., Runsaeng, P., & Utarabhand, P. (2017). Lipopolysaccharide- and beta-1,3-glucan-binding protein from Fenneropenaeus merguiensis functions as a pattern recognition receptor with a broad specificity for diverse pathogens in the defense against microorganisms. Dev Comp Immunol, 67, 434-444. Chen, C., Huang, Q., Fu, X., & Liu, R. H. (2016). In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food Funct, 7, 4637-4643. Cho, H. D., Lee, J. H., Jeong, J. H., Kim, J. Y., Yee, S. T., Park, S. K., Lee, M. K., & Seo, K. I. (2016). Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. J Sci Food Agric, 96, 1085-1092. Dalheim, M. O., Arnfinnsdottir, N. B., Widmalm, G., & Christensen, B. E. (2016). The size and shape of three water-soluble, non-ionic polysaccharides produced by lactic acid bacteria: A comparative study. Carbohydr Polym, 142, 91-97. Deepak, V., Ramachandran, S., Balahmar, R. M., Pandian, S. R., Sivasubramaniam, S. D., Nellaiah, H., & Sundar, K. (2016). In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines.In Vitro Cell Dev Biol Anim, 52, 163-173. Dias, D. R., Silva, M. S., Cristina de Souza, A., Magalhaes-Guedes, K. T., Ribeiro, F. S., & Schwan, R. F. (2016). Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.Food Technol Biotechnol, 54, 351-359. Ferrer, S., Manes-Lazaro, R., Benavent-Gil, Y., Yepez, A., & Pardo, I. (2015). Acetobacter musti sp. nov. isolated from Bobal grape must. Int J Syst Evol Microbiol. Furukawa, S., Isomae, R., Tsuchiya, N., Hirayama, S., Yamagishi, A., Kobayashi, M., Suzuki, C., Ogihara, H., & Morinaga, Y. (2015). Screening of lactic acid bacteria that can form mixed-species biofilm With Saccharomyces cerevisiae.Biosci Biotechnol Biochem, 79, 681-686. Gong, L., Wu, H., Yu, H. L., Zhao, T. F., & Xu, Q. X. (2013). [Comparative study on toxicity of extracts from Phytolaccae Radix before and after being processed with vinegar]. Zhongguo Zhong Yao Za Zhi, 38, 1610-1613. Heydari, M., Dalfardi, B., Golzari, S. E., Habibi, H., & Zarshenas, M. M. (2014). The medieval origins of the concept of hypertension. Heart Views, 15, 96-98. Ichim, T. E., Patel, A. N., & Shafer, K. A. (2016). Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome. J Transl Med,14, 184. Jakobsdottir, G., Xu, J., Molin, G., Ahrne, S., & Nyman, M. (2013). High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One, 8, e80472. Kim, H., Lee, H., & Shin, K. S. (2016). Intestinal immunostimulatory activity of neutral polysaccharide isolated from traditionally fermented Korean brown rice vinegar. Biosci Biotechnol Biochem, 80, 2383-2390. Leung, C., Herath, C. B., Jia, Z., Andrikopoulos, S., Brown, B. E., Davies, M. J., Rivera, L. R., Furness, J. B., Forbes, J. M., & Angus, P. W. (2016). Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World J Gastroenterol, 22, 8026-8040. Lopez-Froilan, R., Ramirez-Moreno, E., Podio, N. S., Perez-Rodriguez, M. L., Camara, M., Baroni, M. V., Wunderlin, D. A., & Sanchez-Mata, M. C. (2016). In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples. Food Funct, 7, 2706-2711. Mahony, J., McDonnell, B., Casey, E., & van Sinderen, D. (2016). Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria. Annu Rev Food Sci Technol, 7, 267-285. Mateo, E., Torija, M. J., Mas, A., & Bartowsky, E. J. (2014). Acetic acid bacteria isolated from grapes of South Australian vineyards. Int J Food Microbiol, 178, 98-106. Nagashima, M., & Saito, K. (2010). Antioxidant activity of the new black vinegar 'IZUMI'. J Nutr Health Aging, 14, 845-849. Nie, Z., Zheng, Y., Wang, M., Han, Y., Wang, Y., Luo, J., & Niu, D. (2013). Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour Technol, 148, 325-333. O'Keefe, J. H., Gheewala, N. M., & O'Keefe, J. O. (2008). Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol, 51, 249-255. Perumpuli, P. A., Watanabe, T., & Toyama, H. (2014). Pellicle of thermotolerant Acetobacter pasteurianus strains: characterization of the polysaccharides and of the induction patterns. J Biosci Bioeng, 118, 134-138. Qi, Z., Yang, H., Xia, X., Wang, W., Leng, Y., Yu, X., & Quan, W. (2014). [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation]. Wei Sheng Wu Xue Bao, 54, 299-308. Saber, A., Alipour, B., Faghfoori, Z., & Yari Khosroushahi, A. (2017). Cellular and molecular effects of yeast probiotics on cancer.Crit Rev Microbiol, 43, 96-115. Sadeghi Ekbatan, S., Sleno, L., Sabally, K., Khairallah, J., Azadi, B., Rodes, L., Prakash, S., Donnelly, D. J., & Kubow, S. (2016). Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chem,204, 453-462. Salehi-Abargouei, A., Ghiasvand, R., & Hariri, M. (2017). Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.Probiotics Antimicrob Proteins. Sanchez, B., Delgado, S., Blanco-Miguez, A., Lourenco, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res, 61. Schleputz, T., & Buchs, J. (2013). Investigation of vinegar production using a novel shaken repeated batch culture system. Biotechnol Prog, 29, 1158-1168. Song, N. E., Cho, H. S., & Baik, S. H. (2016). Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine. Braz J Microbiol, 47, 452-460. Takahashi, L. S., Biller-Takahashi, J. D., Mansano, C. F., Urbinati, E. C., Gimbo, R. Y., & Saita, M. V. (2017). Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish Shellfish Immunol, 60, 311-317. Tanaka, H., Watanabe, K., Ma, M., Hirayama, M., Kobayashi, T., Oyama, H., Sakaguchi, Y., Kanda, M., Kodama, M., & Aizawa, Y. (2009). The Effects of gamma-Aminobutyric Acid, Vinegar, and Dried Bonito on Blood Pressure in Normotensive and Mildly or Moderately Hypertensive Volunteers.J Clin Biochem Nutr, 45, 93-100. Tischer, B., Oliveira, A. S., Ferreira Dde, F., Menezes, C. R., Duarte, F. A., Wagner, R., &Barin, J. S. (2017). Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry. Food Chem, 215, 17-21. Tossenberger, J., Rademacher, M., Nemeth, K., Halas, V., & Lemme, A. (2016). Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poult Sci, 95, 2058-2067. Uchiyama, M., Oguri, M., Mojumdar, E. H., Gooris, G. S., & Bouwstra, J. A. (2016). Free fatty acids chain length distribution affects the permeability of skin lipid model membranes. Biochim Biophys Acta, 1858, 2050-2059. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G. E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am DietAssoc, 110, 911-916 e912. Wang, C. Y., Zhang, J., &Gui, Z. Z. (2015). Acetobacter bacteria are found in Zhenjiang vinegar grains. Genet Mol Res, 14, 5054-5064. Wu, J. J., Ma, Y. K., Zhang, F. F., & Chen, F. S. (2012). Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of 'Shanxi aged vinegar', a traditional Chinese vinegar. Food Microbiol, 30, 289-297. Wu, L. H., Lu, Z. M., Zhang, X. J., Wang, Z. M., Yu, Y. J., Shi, J. S., & Xu, Z. H. (2017). Metagenomics reveals flavor metabolic network of cereal vinegar microbiota. Food Microbiol, 62, 23-31. Yun, S. N., Ko, S. K., Lee, K. H., & Chung, S. H. (2007). Vinegar- processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch Pharm Res, 30, 587-595. Zhu, H., Qiu, J., & Li, Z. (2016). Determination of rheological property and its effect on key aroma release of Shanxi aged vinegar. J Food Sci Technol, 53, 3304-3311.
摘要: 醋酸是由酵母菌發酵產生酒精,再經由醋酸菌發酵酒精而成的產物,是食用醋的主要呈味物質。食用醋在全世界各地都已經有上百年的食用歷史,在歐美地區更是被視為對人體有助益的健康食品。 傳統水果醋製造過程是採用酵母菌做一階發酵,再用醋酸菌做二階發酵,本實驗探討在水果醋發酵製造過程中,導入乳酸菌發酵,研究透過乳酸菌發酵而產生加乘作用,增加水果醋總多酚和總多醣的含量。 實驗設計分別在酵母菌和醋酸菌發酵製造過程中的不同階段導入乳酸菌發酵,結果顯示乳酸菌單獨發酵所產的總多酚和總多醣含量高於酵母菌和醋酸菌;乳酸菌導入酵母菌和醋酸菌的發酵製程,可以產生明顯的加乘功效,總多酚和總多醣含量高於未導入乳酸菌發酵及乳酸菌單獨發酵;乳酸菌和酵母菌共同發酵優於分階段發酵。 不同乳酸菌種亦會有影響,Lactobacillus plantarum發酵所產的總多酚含量最高(達700µg/mL),而Streptococcus thermophilus所產的總多醣含量最高(達7%)。
Acetic acid is produced by the alcohol fermentation of brewing yeasts, and then converted into acetic acid by the acetic acid bacteria. Acetic acid is the main flavor substance of vinegar which has hundreds of history of use across the world. Additionally, in Europe and the United States, vinegar is considered beneficial to human health and is a functional food. The traditional manufacturing process of fruit vinegar was first introduced into brewing yeasts, and then second introduced into acetic acid bacteria. This study aims at elucidating introduction of lactic acid bacteria in the manufacturing process of vinegar is able to exert synergic effects and enhance the content of total polyphenols and polysaccharides. The results showed that the content of total polyphenols and polysaccharides produced by fermentation of lactic acid bacteria were higher than that of yeasts and acetic acid bacteria. Introduction of lactic acid bacteria into fermentation process of yeasts and acetic acid bacteria significantly exert synergic effects as evidenced by increased contents of total polyphenols and polysaccharides which were both higher than that of lactic acid bacteria fermentation only or traditional fermentation of only yeasts and acetic acid bacteria. Lactic acid bacteria co-fermentation with yeasts was observed to be better than that of separated-phase fermentation by lactic acid bacteria and yeasts. Different lactic acid bacteria species also play roles in production of total polyphenols and polysaccharides. Lactobacillus plantarum produced the highest total polyphenol content(700µg/mL), while Streptococcus thermophilus produced the highest total polysaccharide content(7%).
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.