Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96031
標題: Effect of allantoin addition and crosslinking treatment on the properties of plant polysaccharide/chitosan bioscaffolds
添加尿囊素及交聯處理對植物多醣混合幾丁聚醣之生物支架性質的影響
作者: Hsin-Lan Chang
張欣嵐
關鍵字: 尿囊素
幾丁聚醣
刺槐豆膠
蒟蒻膠
生物支架
allantoin
chitosan
locust bean gum
konjac
bioscaffold
引用: 林佩琳:到手香精油之抑菌性研究及其在生物支架上之應用。碩士論文。國立中興大學食品暨應用生物科技學系。台中市,台灣。(2013)。 芦明 及宋永莱(1999):弹性体交联密度测定仪的改进及其应用。含能材料。7(3), 141-144。 陳健賢:以多醣基質製備多孔性生物支架之研究。博士後研究論文。國立中興大學食品暨應用生物科技學系。台中市,台灣。(2011)。 黃翎:以明膠與多醣基質製備多孔性生物支架之研究。碩士論文。國立中興大學食品暨應用生物科技學系。台中市,台灣。(2015)。 詹晓北(2003):食用胶的生产, 性能与应用。中國輕工業出版社。北京,中國。 劉華昌(2008):再生醫學綜論p.1-14。教育部「生物及醫學科技人才培育先導型計畫」。台北,台灣。 蔡佩蓉:混合多醣基質及交聯處理對幾丁聚醣生物支架特性的影響。碩士論文。國立中興大學食品暨應用生物科技學系。台中市,台灣。(2014)。 Adekogbe, I., & Ghanem, A. (2005). Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 26(35), 7241-7250. Ahmed, S., & Ikram, S. (2016). Chitosan Based Scaffolds and Their Applications in Wound Healing. Achievements in the Life Sciences, 10(1), 27-37. Akema Fine Chemicals. (2006). Allantoin: a safe and effective skin protectant. Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9), 1644-1667. Araújo, L. U., Grabe-Guimarães, A., Mosqueira, V. C. F., Carneiro, C. M., & Silva-Barcellos, N. M. (2010). Profile of wound healing process induced by allantoin. Acta Cirurgica Brasileira, 25, 460-461. Arun Richard, C., Venugopal, J., Sundarrajan, S., & Ramakrishna, S. (2011). Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomedical Materials, 6(1), 015001. Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 3(202). Barak, S., & Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications—A review. International Journal of Biological Macromolecules, 66, 74-80. Barbieri, J. S., Wanat, K., & Seykora, J. (2014). Skin: Basic Structure and Function. In L. M. McManus & R. N. Mitchell (Eds.), Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms (pp. 1134-1144). San Diego: Academic Press. Becker, L. C., Bergfeld, W. F., Belsito, D. V., Klaassen, C. D., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2010). Final Report of the Safety Assessment of Allantoin and Its Related Complexes. International Journal of Toxicology, 29(3_suppl), 84S-97S. BeMiller, J. N. (2007). Carbohydrate chemistry for food scientists. St Paul: American Association of Cereal Chemists, Inc (AACC). Berretta, J., Bumgardner, J. D., & Jennings, J. A. (2017). Lyophilized chitosan sponges. In J. A. Jennings & J. D. Bumgardner (Eds.), Chitosan Based Biomaterials Volume 1 :Fundamentals (Vol. 1, pp. 239-253): Woodhead Publishing. Boateng, J., & Catanzano, O. (2015). Advanced Therapeutic Dressings for Effective Wound Healing—A Review. Journal of Pharmaceutical Sciences, 104(11), 3653-3680. Broughton, G. I., Janis, J. E., & Attinger, C. E. (2006). The Basic Science of Wound Healing. Plastic and reconstructive surgery, 117(7S), 12S-34S. Bumgardner, J. D., Murali, V. P., Su, H., Jenkins, O. D., Velasquez-Pulgarin, D., Jennings, J. A., Sivashanmugam, A., & Jayakumar, R. (2017). Characterization of chitosan matters. In J. A. Jennings & J. D. Bumgardner (Eds.), Chitosan Based Biomaterials Volume 1 :Fundamentals (Vol. 1, pp. 81-114): Woodhead Publishing. Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., Singh, S. R., & Pillai, S. R. (2016). Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. International Journal of Molecular Sciences, 17(12), 1974. Chen, F.-M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86-168. Chen, H., Lan, G., Ran, L., Xiao, Y., Yu, K., Lu, B., Dai, F., Wu, D., & Lu, F. (2018). A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 183(Supplement C), 70-80. Chendra, P. K., & Sobral, P. J. d. A. (2000). Calculation of viscoelastic properties of edible films: application of three models. Food Science and Technology, 20, 250-256. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods, 89(2), 271-277. Derler, S., & Gerhardt, L.-C. (2011). Tribology of Skin: Review and Analysis of Experimental Results for the Friction Coefficient of Human Skin. Tribology Letters, 45(1), 1-27. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011, 19. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 5(4), 22. Ebada, S. S., Edrada, R. A., Lin, W., & Proksch, P. (2008). Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat. Protocols, 3(12), 1820-1831. Falanga, V., Faria, K., & Bollenbach, T. (2014). Bioengineered Skin Constructs. In Principles of Tissue Engineering (Fourth Edition) (pp. 1619-1643). Boston: Academic Press. Fenner, J., & Clark, R. A. F. (2016). Anatomy, Physiology, Histology, and Immunohistochemistry of Human Skin. In J. H. H. Iv (Ed.), Skin Tissue Engineering and Regenerative Medicine (pp. 1-17). Boston: Academic Press. Gao, L., Gan, H., Meng, Z., Gu, R., Wu, Z., Zhang, L., Zhu, X., Sun, W., Li, J., Zheng, Y., & Dou, G. (2014). Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids and Surfaces B: Biointerfaces, 117, 398-405. Gontard, N., Guilbert, S., & Cuq, J.-L. (1992). Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. Journal of Food Science, 57(1), 190-195. Gorczyca, G., Tylingo, R., Szweda, P., Augustin, E., Sadowska, M., & Milewski, S. (2014). Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydrate Polymers, 102, 901-911. Han, F., Dong, Y., Su, Z., Yin, R., Song, A., & Li, S. (2014). Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. International Journal of Pharmaceutics, 476(1-2), 124-133. Ho, J., Walsh, C., Yue, D., Dardik, A., & Cheema, U. (2017). Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Advances in Wound Care, 6(6), 191-209. Hsieh, C.-Y., Tsai, S.-P., Ho, M.-H., Wang, D.-M., Liu, C.-E., Hsieh, C.-H., Tseng, H.-C., & Hsieh, H.-J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. Igile, G. O., Essiet, G. A., Uboh, F., & Edet, E. (2014). Rapid Method for the Identification and Quantification of Allantoin in Body Creams and Lotions for Regulatory Activities. International Journal of Current Microbiology and Applied Sciences, 3(7), 552-557. Jang, J., Seol, Y.-J., Kim, H. J., Kundu, J., Kim, S. W., & Cho, D.-W. (2014). Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 37, 69-77. Jiankang, H., Dichen, L., Yaxiong, L., Bo, Y., Bingheng, L., & Qin, L. (2007). Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 48(15), 4578-4588. Ke, M., Wahab, J. A., Hyunsik, B., Song, K.-H., Lee, J. S., Gopiraman, M., & Kim, I. S. (2016). Allantoin-loaded porous silica nanoparticles/polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Advances, 6(6), 4593-4600. Kim, S. E., Park, J. H., Cho, Y. W., Chung, H., Jeong, S. Y., Lee, E. B., & Kwon, I. C. (2003). Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering. Journal of Controlled Release, 91(3), 365-374. Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P., & Phisalaphong, M. (2015). Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydrate Polymers, 132, 146-155. Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., Haider, A., Lee, D. H., & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International Journal of Biological Macromolecules, 95, 962-973. López Angulo, D. E., & do Amaral Sobral, P. J. (2016). Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. International Journal of Biological Macromolecules, 92, 645-653. Lagendijk, J., Ubbink, J. B., & Vermaak, W. J. (1995). The determination of allantoin, a possible indicator of oxidant status, in human plasma. J Chromatogr Sci, 33(4), 186-193. Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. Li, D.-W., Lei, X., He, F.-L., He, J., Liu, Y.-L., Ye, Y.-J., Deng, X., Duan, E., & Yin, D.-C. (2017). Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. International Journal of Biological Macromolecules, 105, 584-597. Liu, C., Xia, Z., & Czernuszka, J. T. (2007). Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design, 85(7), 1051-1064. Liu, C. Z., Xia, Z. D., Han, Z. W., Hulley, P. A., Triffitt, J. T., & Czernuszka, J. T. (2008). Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B(2), 519-528. Livingston, S. K., & Prince, L. H. (1932). The treatment of chronic osteomyelitis: With special reference to the use of the maggot active principle. Journal of the American Medical Association, 98(14), 1143-1149. Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J., Hu, X., & Han, C. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833-4841. Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7(5), 30-40. Madrazo-Jiménez, M., Rodríguez-Caballero, Á., Serrera-Figallo, M.-Á., Garrido-Serrano, R., Gutiérrez-Corrales, A., Gutiérrez-Pérez, J.-L., & Torres-Lagares, D. (2016). The effects of a topical gel containing chitosan, 0,2% chlorhexidine, allantoin and despanthenol on the wound healing process subsequent to impacted lower third molar extraction. Medicina Oral, Patología Oral y Cirugía Bucal, 21(6), e696-e702. Mahmoud, A. A., & Salama, A. H. (2016). Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment. European Journal of Pharmaceutical Sciences, 83(Supplement C), 155-165. Maksimovic, Z., Malenovic, A., Jancic, B., & Kovacevic, N. (2004). Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection. Pharmazie, 59(7), 524-527. Mikos, A. G., & Temenoff, J. S. (2000). Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic Journal of Biotechnology, 3(2), 23-24. Mirza, E. H., Azhar Bin WaN Ibrahima, W. M., Pingguan-Murphy, B., & Djordjevic, I. (2015). Polyoctanediol citrate-zinc oxide nano-composite multifunctional tissue engineering scaffolds with anti-bacterial properties. Digest Journal of Nanomaterials and Biostructures, 10, 415-428. Mojarradi, H. (2010). Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation. Unpublished Student thesis. Nazarov, R., Jin, H.-J., & Kaplan, D. L. (2004). Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 5(3), 718-726. Ni, Y., Tang, Z., Cao, W., Lin, H., Fan, Y., Guo, L., & Zhang, X. (2015). Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials. International Journal of Biological Macromolecules, 74, 367-375. Ninan, N., Grohens, Y., Elain, A., Kalarikkal, N., & Thomas, S. (2013). Synthesis and characterisation of gelatin/zeolite porous scaffold. European Polymer Journal, 49(9), 2433-2445. O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88-95. O'Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. (2004). Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials, 25(6), 1077-1086. O'Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26(4), 433-441. Oryan, A., Kamali, A., Moshiri, A., Baharvand, H., & Daemi, H. (2018). Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. International Journal of Biological Macromolecules, 107, 678-688. Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., & Nagar, B. J. (2013). Locust bean gum: A versatile biopolymer. Carbohydrate Polymers, 94(2), 814-821. Qian, L., & Zhang, H. (2011). Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology & Biotechnology, 86(2), 172-184. Saqib, M., Lou, B., Halawa, M. I., Kitte, S. A., Liu, Z., & Xu, G. (2017). Chemiluminescence of Lucigenin–Allantoin and Its Application for the Detection of Allantoin. Analytical Chemistry, 89(3), 1863-1869. Sarem, M., Moztarzadeh, F., & Mozafari, M. (2013). How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydrate Polymers, 93(2), 635-643. Sperling, L. H. (2005). Polymer Viscoelasticity and Rheology. In Introduction to Physical Polymer Science (4 ed., pp. 507-556). Canada: John Wiley & Sons, Incoporation, Hoboken, New Jersey. Stratton, S., Shelke, N. B., Hoshino, K., Rudraiah, S., & Kumbar, S. G. (2016). Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 1(2), 93-108. Ullah, S., Zainol, I., & Idrus, R. H. (2017). Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. International Journal of Biological Macromolecules, 104(Part A), 1020-1029. Vatankhah, E., Semnani, D., Prabhakaran, M. P., Tadayon, M., Razavi, S., & Ramakrishna, S. (2014). Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 10(2), 709-721. Velnar, T., Bailey, T., & Smrkolj, V. (2009). The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research, 37(5), 1528-1542. Vunain, E., Mishra, A. K., & Mamba, B. B. (2017). Fundamentals of chitosan for biomedical applications. In J. A. Jennings & J. D. Bumgardner (Eds.), Chitosan Based Biomaterials Volume 1 :Fundamentals (Vol. 1, pp. 3-30): Woodhead Publishing. Wang, H.-M., Chou, Y.-T., Wen, Z.-H., Wang, Z.-R., Chen, C.-H., & Ho, M.-L. (2013). Novel Biodegradable Porous Scaffold Applied to Skin Regeneration. PLOS ONE, 8(6), e56330. Wang, P., Zhang, A., Jin, Y., Zhang, Q., Zhang, L., Peng, Y., & Du, S. (2014). Molecularly imprinted layer-coated hollow polysaccharide microcapsules toward gate-controlled release of water-soluble drugs. RSC Advances, 4(50), 26063-26073. Wang, Y., Tomlins, P. E., Coombes, A. G., & Rides, M. (2010). On the determination of Darcy permeability coefficients for a microporous tissue scaffold. Tissue Engineering Part C : Methods, 16(2), 281-289. Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 6(3), 1167-1177. Zavoral, J. H., Hannan, P., Fields, D. J., Hanson, M. N., Frantz, I. D., Kuba, K., Elmer, P., & Jacobs, D. (1983). The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. The American journal of clinical nutrition, 38(2), 285-294. Zhang, C., Chen, J.-d., & Yang, F.-q. (2014). Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydrate Polymers, 104, 175-181. Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182.
摘要: 尿囊素(Allantoin)廣泛存在於紫草科(Symphytum officinale, Comfrey)的葉及根中,因其具有抗刺激、刺激纖維母細胞增生及幫助傷口癒合等保護皮膚的功效,而常使用在化妝品、治療皮膚的藥物及個人保養品中。先前研究結果指出添加刺槐豆膠、蒟蒻膠之幾丁聚醣支架,能夠改善幾丁聚醣支架之物理性質,因此,本研究欲添加不同濃度(0、0.25、0.5%)的尿囊素於刺槐豆膠/幾丁聚醣及蒟蒻膠/幾丁聚醣支架中,再以低細胞毒性的Genipin(GP)及EDAC+NHS(EDAC)進行交聯,探討尿囊素的添加及交聯處理對刺槐豆膠/幾丁聚醣及蒟蒻膠/幾丁聚醣生物支架的微結構、機械性質、溶解率等物理性質及纖維母細胞(NIH-3T3)生長狀態的影響。 從掃描式電子顯微鏡結果可得,支架表面皆散佈著大小不一的孔洞,刺槐豆膠/幾丁聚醣支架的平均孔洞直徑約介於63~84 μm,蒟蒻膠/幾丁聚醣支架的的平均孔洞直徑約介於61~107 μm。孔洞率結果顯示,所有支架的孔洞率皆大於92%。 由膨潤率曲線可發現,支架的膨潤率皆隨時間上升達最大膨潤率後趨緩,且具有極高的反應速率常數。尿囊素的添加會使大部分支架的最大膨潤率下降,交聯處理可提升大部分支架的最大膨潤率。在溶解率試驗中,添加尿囊素支架的溶解率皆因尿囊素的釋出而顯著增加,而經GP交聯後可有效降低支架的溶解率。由交聯密度結果可發現,大部分支架的交聯密度隨著尿囊素添加濃度增加而下降,而經GP交聯後可有效提升支架的交聯密度。 在機械性質分析中,所有支架的彈性模量及壓縮應力皆隨尿囊素添加濃度的增加而增加,因交聯處理而下降,推測與支架孔洞大小的變化有關。應力緩和試驗中,尿囊素的添加濃度、多醣種類對應力緩和時間(λ)並無顯著影響,而蒟蒻膠/幾丁聚醣支架經GP交聯後,λ會增加;在刺槐豆膠/幾丁聚醣支架中,未經交聯支架的應力緩和係數(Y)會因尿囊素的添加而下降,經交聯後則隨尿囊素添加而上升,說明尿囊素的添加會增加未經交聯支架的彈性,經交聯後則會使支架具有較高的黏性性質,而蒟蒻膠/幾丁聚醣支架則具相反的趨勢。 細胞存活率的結果顯示,添加0%及0.5%尿囊素且經GP交聯的支架皆不具有細胞毒性,且添加尿囊素的支架確實具有促進NIH-3T3增生的效果。 綜合以上結果,說明添加0.5%尿囊素且經GP交聯的支架具有作為皮膚組織工程支架或藥物載體的潛力。
Allantoin exists in lots of plants, especially in leaves and roots of Comfrey. It has many effective effects on skin protective properties, such as anti-irritation, stimulates proliferation of fibroblast and help wound healing. Therefore, it's used in cosmetics, medicine that healing skin disease and skin care products extensively. According to previous study pointing out that adds locust bean gum and konjac can improve physical properties of pure chitosan scaffold. Hence, the purpose of this study is evaluating the effect of the addition of allantoin and different crosslinking treatments on the physical properties, such as micro-structure, mechanical properties and dissolution rate, and cell viability of NIH-3T3 cell of locust bean gum/chitosan and konjac/chitosan scaffolds. Results of SEM showed that there are lots of pores with various size distributing on the surface of all scaffolds. The mean pore size of locust/chitosan scaffolds ranged from 63~84 μm, and 61~107 μm for konjac/chitosan scaffolds. The porosity of all scaffolds is higher than 92%. As the swelling curve showed, the swelling ratio of scaffolds increased with time to a certain level then levels off. All scaffolds had high reaction rate constant. The addition of allantoin decreased the maximum swelling ratio of most scaffolds. After crosslinking, the maximum swelling ratio of most of scaffold increased. In dissolution test, the dissolution rate of scaffolds with allantoin increased significantly because of the release of allantoin while crosslinked with genipin could decrease the dissolution rate. The crosslinking density of scaffolds increased with the concentration of allanoin. Moreover, scaffolds crosslinked with genipin increased the crosslinking density of scaffolds effectively. The elastic modulus and compressive strength of the scaffolds increased with the concentration of allantoin but decreased with crosslinking treatment, which might related to the change of mean pore size of scaffolds. In relaxation test, there is no significant effect of the concentration of allantoin and different kinds of polysaccharides on relaxation time (λ) of scaffolds while an increase λ of konjac/chitosan scaffold after crosslinking by GP. Relaxation coefficient of locust bean gum/chitosan scaffold without crosslinking decreased with the addition of allantoin but increased after crosslinking that demonstrated the addition of allantoin could increase the elasticity of locust bean gum/chitosan scaffold without crosslinking while crosslinking treatment could increase its viscosity. However, there's a different tendency of konjac/chitosan scaffolds. Cell viability results revealed that GP-cross-linked scaffolds with 0% and 0.5% allantoin didn't have cytotoxicity and the addition of allantoin significantly promoted the proliferation of NIH-3T3. In conclusion, GP-cross-linked scaffolds with 0% and 0.5% allantoin had the potential for skin tissue engineering and drug delivery.
URI: http://hdl.handle.net/11455/96031
文章公開時間: 2021-02-08
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.